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1. Introduction 
 
The Fluoride Action Network (FAN) would like to take this opportunity to respond to the 
Amended Cryolite Final Working Plan for Cryolite. We understand that EPA must make 
numerous difficult decisions concerning the Registration Review for cryolite, and 
appreciate the concerted effort that has thus far gone into determining whether cryolite 
continues to meet the Federal Insecticide, Fungicide, and Rodenticide Act (FIRFA) 
standard for registration.   
 
Cryolite as a pesticide has been scientifically neglected to the advantage of aluminum 
producers, and to the belief system advocated by EPA’s Office of Drinking Water and 
CDC’s Oral Health Division that putting fluoride in drinking water is beneficial for oral 
health. However, studies published since the 1996 RED for cryolite confirm the need for 
a more thorough study of its adverse effects.  
 
While FAN applauds the decision by EPA’s EFED to include an avian reproduction 
study (850.2300) for cryolite, numerous other concerns were raised by FAN in our 
previous submission (FAN, 5 Jul 2011) that were not adequately addressed prior to 
release of the Amended Cryolite Final Work Plan Registration Review (EPA, December 
2011). Several of these concerns are reiterated and expounded upon below. 
 
 
 
2. Response to EPA’s Documents Concerning the Registration Review for Cryolite 
 
2.1. EPA has failed to acknowledge that OPP must discontinue its promulgation of 
cryolite, as it does not meet the safety standard in FFDCA Section 408 regarding 
fluoride. 
 
Cryolite is the only regulated pesticide to leave fluoride residues in and/or on fresh fruits 
and vegetables. Aside from kiwifruit (fluoride tolerance of 15 ppm), all other cryolite-
treated foods have a fluoride tolerance of 7 ppm (US CFR, 2012), including: 
 

Apricot, Blackberry, Blueberry (huckleberry) Boysenberry, Broccoli, Brussels 
Sprouts, Cabbage, Cauliflower, Collards, Cranberry, Dewberry, Eggplant, Grape, 
Kale, Kohlrabi, Lettuce (head & leaf), Loganberry, Melon, Nectarine, Peach, 
Pepper, Plum (prune, fresh), Pumpkin, Raspberry, Squash (summer & winter), 
Strawberry, Tomato, Youngberry. 
 
Citrus Fruit*: Calamondin, Citrus citron, Citrus hybrids (chironja, tangelo, 
tangor), grapefruit, kumquat, lemon, lime, mandarin (tangerine), orange (sweet & 
sour), pummelo, satsuma mandarin 
 
*Note: the Citrus fruit category has recently expanded. See Citrus Fruit Group 10 
and its definitions at http://ir4.rutgers.edu/other/CropGroup.htm 

According to the EPA Office of Water (OW), children younger than age 7 are routinely 
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exposed to fluoride levels that exceed the “safe” dose recently proposed by OW 
(RfD=0.08 mg/kg/day; EPA OW, 2010a). Even when exposure estimates are recalculated 
to exclude the fluoride contribution from sulfuryl fluoride (as proposed by EPA OPP; FR, 
2011b), the aggregate exposure to fluoride for this major identifiable population 
subgroup (children) does not meet the safety standard in FFDCA Section 408. Although 
the main source of fluoride for most Americans is still drinking water, Rankin et al. 
(2011) found that children 24-60 months of age consume an average of 36-39 percent of 
dietary fluoride from solid foods, with some children receiving as much as 85-88 percent 
of their dietary fluoride from solid foods.  
 
Fluoride remains in the body for an extended period of time, with a half-life of 
approximately 20 years in the human bone (NRC, 2006, page 92). It is estimated that for 
daily fluoride exposure, a healthy body will retain approximately 50 percent, which is 
mainly sequestered in the bone. When a person eats food treated with cryolite, some of 
the fluoride consumed will remain in the body for the entire lifespan.  
 

Fluoride retained in bones over time after eating one serving 
of a Cryolite-treated fruit or vegetable at 1 year of age 

At age 
(years) 

Percent of F from 
cryolite retained in bone 

20 50% 
40 25% 
60 12.5% 
80 6.3% 

100 2.2% 
120 1.1% 

 
 
In addition to teeth and bones, fluoride also accumulates in the pineal gland (Luke, 2001), 
and may impact numerous physiological systems. It is irresponsible of EPA to allow the 
use of any pesticide when it or its constituents are known to accumulate and persist in the 
human body.  
 
While EPA’s Office of Drinking Water makes the assumption that dental fluorosis is the 
most sensitive endpoint for fluoride exposure, the NRC report (2006) identified not one, 
but three adverse effects with the current maximum contaminant level of 4 ppm fluoride 
in drinking water:  
 

1. Bone Fractures 
2. Clinical stage II skeletal fluorosis—associated with chronic joint pain,  
     arthritic symptoms, calcification of ligaments, and osteosclerosis of    
     cancellous bones	  
3. Severe dental fluorosis  

 
 
Numerous other adverse effects have been reported in the scientific literature at or below 
those levels found to cause dental fluorosis. Among these are neurological effects (e.g. 
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brain damage and reduced IQ in children), endocrine effects (e.g. altered thyroid 
function), bone disorders (e.g. changes in bone density, bone fractures), osteosarcoma, 
and reproductive effects. 
 
 
2.2. EPA has refused to establish tolerances for aluminum from cryolite on food. 
 
After 50 years of use of cryolite as a pesticide in the United States, there is a lot we still 
do not know about this chemical. As stated by EPA (2011b):	  
  

Its exact mechanism of action is not yet well understood. (p.7) 
 
Although the use of cryolite should have negligible impacts on ground and 
surface water quality, cryolite applications in acidic soils or aquatic environments 
may contribute to Al3+ toxicity in plants and aquatic organisms (p.10) 
 
In the hydrolysis study, aluminum speciation with fluoride or hydroxide was not 
determined, equilibrium constants were not measured, and the results were not 
compared with those from scientific literature (p.10). 

 
Like fluoride, aluminum remains in the body for an extended period of time. According 
to ATSDR’s (2008, p.112) report on aluminum, “a half-life of about 50 years was 
estimated (Priest 2004)”. Thus, in addition to tolerances for fluoride, EPA should issue 
tolerances for aluminum as a dietary residue of cryolite, and should calculate aggregate 
aluminum exposures to determine if the aluminum from cryolite adds unnecessarily to an 
already over-exposed population. In its response to FAN’s comments, EPA states that 
“Most foods that have been tested were found to contain 0.1-10 ppm aluminum” (EPA, 6 
Sept 2011, p.2). EPA should determine if foods treated with cryolite have higher levels of 
aluminum than untreated foods.  
 
EPA’s statement that “a much larger source of oral exposure to aluminum is reportedly 
from antacids and buffered analgesics” is by no means an acceptable or scientific 
rationale for not issuing tolerances for aluminum. ATSDR (2008) notes the following for 
those exposed to antacids and buffered analgesics: 
 

Growth reduction, hypotonia, muscle weakness, and craniosynostosis (premature 
ossification of the skull and obliteration of the sutures) have been observed in 
healthy infants following prolonged used of oral antacids for the treatment of 
colic (Pivnick et al., 1995). (page 122) 
 
Osteomalacia has been observed in healthy individuals following long-term use of 
aluminum-containing antacids and in individuals with kidney disease. There are 
numerous case reports of osteomalacia and rickets in otherwise healthy infants 
and adults using aluminum-containing antacids for the treatment of 
gastrointestinal illnesses (i.e., ulcers, gastritis, colic)… (page 71) 

 
For those consuming antacids or oral analgesics, any additional aluminum ingested from 
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food with unregulated levels could pose an even more serious health threat than may 
already be present.  
 
EPA may only promulgate a pesticide tolerance determined to be “safe”—meaning that 
“there is a reasonable certainty that no harm will result from aggregate exposure to the 
pesticide chemical residue, including all anticipated dietary exposures and all other 
exposures for which there is reliable information” (FDA, 2009). OPP must therefore 
begin to phase out cryolite, based on the same rationale as recently stated for 
sulfuryl fluoride (FR, 2011b). 
 
 
2.3. EPA has failed to address valid concerns of the neurological effects of fluoride and 
aluminum from cryolite. 
 
Mundy et al. (2009) at EPA’s Neurotoxicology division classify fluoride as a 
developmental neurotoxicant. Aluminum is a well-known neurotoxicant, and according 
to Hänninen et al. (1994) and others, the brain is one of the recognized target organs for 
its toxicity.  
 

In the cases in which human aluminum toxicity has occurred, the target organs 
appear to be the lung, bone, and the central nervous system (page 117)... The 
molecular mechanism of aluminum bone and neurotoxicity has not been 
established. (ATSDR, 2008, p.99) 

 
According to Walton (2012), "More aluminum enters the brain than leaves, resulting in a 
net increase in intraneuronal aluminum with advancing age." While many studies report 
that aluminum enters and stays in the brain (e.g. House et al., 2012), it is not well known 
what substances enable it to get there. We know that alumina nanoparticles can cross the 
blood-brain barrier (Dong et al., 2012). In our July submission (FAN, 2011) we cited a 
relevant and important low-dose, long-term rat study by Varner et al. (1998). The authors 
of this study suggest that fluoride facilitated the aluminum in the rat chow to cross the 
blood brain barrier as explanation for the high aluminum levels in the brains of the 
fluoride-exposed rats. Yokel (2006) suggested many complex transporters.  
 
The neurotoxic effects of cryolite have the potential to be greater than that of fluoride or 
aluminum alone, as indicated in the following: 
 

Effects were “more pronounced in animals given fluoride and aluminum together 
...it can be concluded that aluminum appears to enhance the neurotoxic hazards 
caused by fluoride.” (Kaur et al., 2009) 

 
The toxic effects of cryolite are largely due to its content of aluminum and 
fluoride. Thus, its toxic effects, if not known, have to be based on known adverse 
effects of aluminum and fluoride. (Soderlund, 1995) 

 
The overall weight of evidence strongly indicates that oral exposure to aluminum 
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results in functional and cognitive alterations. Motor function and sensory 
function are affected by aluminum exposure. (ATSDR, 2008, page 80)  

 
Especially susceptible to adverse neurological effects of aluminum are those in which the 
brain is still forming.  
 

Infants and children should not be viewed as ‘small adults’ with regard to 
toxicological risk as their unique physiology makes them much more vulnerable 
to toxic insults. (Tomljenovic and Shaw, 2012)  
 
For most brain regions analyzed the highest aluminum concentrations were found 
in young rats, which would indicate that early stages of the life cycle must be 
considered for enhanced brain aluminum accumulation. (Dominigo et al., 1996)  

 
Three developmental neurotoxicity tests were performed for cryolite (US EPA, 1996). 
They were all crude, one was unacceptable, and none performed an examination of the 
animal brains. These studies include: 
 

• Rats exposed by gavage to 0, 750, 1500 or 3000 mg/kg/day during gestation days 
6-15 inclusive (MRID 00128112): “the only observation was whitening of the 
teeth of dams”.  This 1983 unpublished study was prepared by Science 
Applications, Inc., and submitted by Agchem Div., Pennwalt Corp. 

• Mice exposed by gavage to 0, 30, 100 or 300 mg/kg/day with bent ribs and limbs 
in fetuses at the highest dose (MRID 42297902). Undated, little information 
available. 

• Rabbits exposed by gavage at dose levels of 0, 10, 30, 100, 300 or 1000 
mg/kg/day (MRID 42297901). This study was deemed “unacceptable” because it 
“suggested that severe maternal toxicity occurred at lower doses than external 
developmental toxicity.” Unpublished 1992 study prepared by WIL Research 
Labs, Inc. 

 
The European Chemicals Agency (2010b) comment on these and two other critical 
studies: 
 

The database contains five developmental toxicity studies and one 2-generation 
study, and they are all very poorly reported.  

	  
 
 
 
It appears that no cryolite study performed thus far has included histological 
examinations of the brain. All cryolite studies should be made available to the public. 
According to ATSDR (2008):  
 

Recent biological monitoring data, particularly for aluminum in blood and urine, 
are limited. More recent information would be useful in assessing current 
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exposure levels… The Department of Health and Human Services and EPA have 
not evaluated the human carcinogenic potential of aluminum… Data on health 
effects of ingested aluminum in humans are unsuitable for MRL [minimal risk 
levels] consideration because studies have centered on specific patient 
populations (i.e., dialysis, neurodegenerative disease) and are not the types 
typically used in risk evaluation.  

 
The oral intake of aluminum tends to be higher for children than for adults 
(Greger 1992). Calculations based on the FDA’s Total Diet Study suggest that 2-
year-old children (13 kg body weight) consumed almost 3 times as much 
aluminum per kg body weight as adult males (75 kg body weight) or adult 
females (60 kg body weight), respectively (0.48 versus 0.18 and 0.15 mg 
aluminum/kg body weight, respectively) (Greger 1992). Infants fed milk-based or 
soy-based infant formulas can be exposed to higher concentrations of aluminum 
than infants fed breast milk or cows’ milk (see Section 6.4.4). 

 
Of the numerous studies reporting the neurotoxicity of aluminum, some include:  
 

• Abd El-Rahman, 2003  
• Abu-Taweel et al., 2012 
• Akila et al., 1999 
• Bondy, 2010  
• Bowdler et al., 1979 
• Cui et al., 2012 
• Domingo et al., 1996 
• Dong et al., 2011 
• Erazi et al., 2010 
• Gómez  et al., 2008 
• Hänninen et al., 2004 
• House et al., 2012 
• Itoh et al., 2008 
• Jin et al., 2009, 2010, 2011 
• Julka et al., 1995 
• Kaizer et al., 2008 
• Kaur et al., 2006a, 2006b, 2009 
• Kim et al., 2007 
• Kumar et al., 2008, 2009a, 2009b 
• Lemire & Appanna, 2011 
• Lipman et al., 1988 
• Liu et al., 2008 

• Markesbery et al., 1984 
• Meyer-Baron et al., 2007 
• Miu et al., 2003 
• Niu et al., 2007 
• Pendlebury et al., 1987, 1988 
• Platt et al., 2001 
• Provan et al., 1992 
• Ribes et al., 2008, 2010 
• Sánchez-Iglesias et al., 2009 
• Sethi et al., 2008 
• Sharma and Sharma, 2012 
• Shaw et al., 2009 
• Solomon et al., 1988 
• Tomljenovic et al., 2012 
• Tripathi et al., 2009 
• Walton, 2007, 2012 
• Xing et al., 2012 
• Yang et al., 2006 
• Yokel, 1985, 1987,1994 
• Yuan et al., 2011 
• Yumoto et al., 2009 

Furthermore, several published reports have found that aluminum exposure may affect 
learning and memory, including:  
 

• Abu-Taweel et al., 2012 
• Cui et al., 2012 

• Jin et al., 2009, 2010, 2011 
• Julka et al., 1995 



	   8	  

• Kaur et al., 2006 
• Lipman et al., 1988 
• Pendlebury et al. 1987 
• Platt et al., 2001 
• Provan et al., 1992 
• Ribes et al., 2010 

• Sethi et al., 2008 
• Solomon et al., 1988 
• Xing et al., 2012 
• Yokel, 1985 
• Yokel et al., 1994

 
As previously mentioned, Kaur et al. (2009) state that “aluminum appears to enhance the 
neurotoxic hazards caused by fluoride.” There are now 26 published papers associating 
exposure to fluoride with lowered IQ in children (Appendix A). Our concern remains for 
the synergistic effects of co-exposure to the neurotoxicants in cryolite: fluoride and 
aluminum, especially for infants and children. 
 
We are exposed to aluminum in many ways. Tariq (1993) reported the following: 
 

According to recent studies in the United States of America the average adult 
American diet includes 20-60 mg aluminum d-1, whereas daily consumption of 
aluminum in the United Kingdom is 6-8 mg. The majority of this aluminum is 
reported to be ingested from the food ingredients which are generally recognized 
as safe. 

 
Walton (2007) reported: 
 

According to the World Health Organization, oral ingestion of aluminum 
additives is the main form of aluminum exposure for the general public. 
Aluminum salts are added to a range of commercially-prepared foods and 
beverages: to clarify drinking water, make salt free-pouring, color snack/dessert 
foods, and make baked goods rise. In the present study, six Wistar rats chronically 
consumed aluminum from 16 months of age to the conclusion of their lifespan 
(averaging 29.8 months) in an amount (1.5mg/kg bodyweight) equivalent to the 
high end of the total aluminum range ingested daily by humans living in 
contemporary urban society…Four out of six rats continued to perform the 
memory task in old age without significant deficit. The remaining two obtained 
significantly lower mean memory scores in old age than in middle age and 
exhibited soft signs associated with dementia. Their hippocampal neurons stained 
for aluminum, showing some but not all features of aluminum accumulation that 
occur in human hippocampal neurons. 

 
The occupational exposure of workers to aluminum and fluoride is also of concern. 
Meyer-Baron et al. (2007), Akila et al. (1999), and Hänninen et al. (1994) reported 
effects on cognitive performance from occupational exposure to aluminum, and many 
more studies on impaired performance on neurobehavioral tests are cited by ATSDR 
(2008, p.15). Calvert et al. (1998) reported “significantly reduced performance on the 
Pattern Memory Test” for structural fumigators using sulfuryl fluoride. 
 
(Concerning occupational exposures, EPA states that there are no incidence reports for 
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cryolite in their database, and therefore there does not appear to be a concern at this time 
that would warrant further investigation. It should be noted, however, that the majority of 
people who do have reactions to pesticides do not know that they should report their 
effects.)  
 
When one substance contains two neurotoxicants and is used on the foods we eat, the 
public expects EPA to act in its best interest to ensure that the necessary studies are 
performed to protect from adverse health effects. The recommendation for a 90-Day 
Inhalation Toxicity Test, as stated in the Amended Cryolite Final Work Plan (US EPA, 
Dec 2011) is inadequate. EPA must require a developmental neurotoxicity test for 
cryolite.  
 
Furthermore, EPA must mandate the testing of cryolite-treated food to determine which 
commodities uptake aluminum and/or its fluoroaluminum compound, which are known 
to be bioavailable. Although “aluminum is found naturally in a great number of foods” 
(ATSDR, 2008, p.125), EPA should not allow even greater exposure to this 
neurotoxicant, which readily accumulates in the human body.  
 
 
2.4. EPA has failed to address valid concerns of endocrine effects of fluoride from 
cryolite. 
 
EPA acknowledges that “as required by FFDCA section 408(p), cryolite is subject to the 
endocrine screening part of the Endocrine Disruptor Screening Program (EDSP)” (EPA, 
Dec 2011, p.9). However, it is also stated that “Cryolite is not among the group of 58 
pesticide active ingredients on the initial list to be screened under the EDSP. (EPA, Dec 
2011, p.10). Nor is cryolite or fluoride included among the Second List of Chemicals for 
Tier 1 Screening (EPA, 2012). 
(http://www.epa.gov/endo/pubs/prioritysetting/draftlist2.htm).  
 
According to the National Research Council’s 2006 report, Fluoride in Drinking Water: 
A Scientific Review of EPA’s Standards, fluoride is “an endocrine disruptor in the broad 
sense of altering normal endocrine function or response” (NRC, 2006, p. 266). In 
addition to altering thyroid function, NRC (2006, p. 256) states that “fluoride is likely to 
cause decreased melatonin production and to have other effects on normal pineal 
function, which in turn could contribute to a variety of effects in humans.”  
 
In light of research findings, NRC (2006) offered the following recommendation: “The 
effects of fluoride on various aspects of endocrine function should be examined further, 
particularly with respect to a possible role in the development of several diseases or 
mental states in the United States.” (p. 267). OPP should therefore require that cryolite 
and its degradation products and complexes immediately undergo testing for endocrine 
disruption potential, instead of waiting for cryolite to be included among the pesticides 
being tested by EPA’s Endocrine Disruptor Screening Program (EDSP). 
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2.5. EPA has refused to consider the potential for aluminofluoride complexes to affect G 
proteins and cellular signaling pathways. 
 
EPA states that “The assumption that cryolite will not cause higher levels of aluminum, 
sodium, or fluoride in water or soil beyond what is normally found as background levels 
in water and soil does not hold true for exposure to plants via contact with leaves” (EPA, 
Dec 2011, p.3).  
 
EPA also acknowledges that “The fluoro-complexes are only predominate in acidic 
environments (pH<6.4),” and that “data indicate the fluoro-complexes of aluminum 
should be important in acidic environments” (EPA, 20 Sept 2011, p.2). 
 
It is feasible that these “higher levels” of aluminum and fluoride from cryolite applied 
directly to plants, may persist on the leaves at the time of consumption, and that the 
acidic environment of the stomach would allow for the formation of fluoro-complexes. 
Furthermore, acidic soils are found in many regions of the United States, including parts 
of California (Atlas of the Biosphere, 1998), where cryolite use is prevalent. 
 
Manoharan et al. (2007) reported: 
 

Increasing rates of F additions to soil significantly increased the soil solution 
concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, 
which ranged from 4.25 to 5.48. High rates of F addition severely restricted root 
growth; the effect was more pronounced in the strongly acidic soil. Speciation 
calculations demonstrated that increasing rates of F additions substantially 
increased the concentrations of Al-F complexes in the soil. Stepwise regression 
analysis showed that it was the combination of the activities of AlF2(1+) and 
AlF(2+) complexes that primarily controlled barley root growth. The results 
suggested that continuous input of F to soils, and increased soil acidification, may 
become an F risk issue in the future.  

 
Numerous studies have identified altered form and/or function of various cells and tissues 
in response to aluminum, fluoride and aluminofluoride complexes (Strunecká and 
Patočka, 2012). Among these findings: 
 

• Brain: 
o Mimic effects of calcium-mobilizing hormones, which suggests 

coupling of hormone receptors to phosphoinositide breakdown 
through G proteins (Rana and Hokin, 1990) 

o Greater hydrolysis of phosphoinositides when aluminum chloride and 
sodium fluoride were present together in rat cerebral cortical 
membranes (Candura et al., 1991) 

o Accumulation of inositol phosphates in suprachiasmatic nuclei region 
of rat hypothalamus when incubated with aluminofluoride complexes 
(Nadakavukaren et al, 1990) 

o Aluminofluoride complexes blocked the increase in camp stimulation 
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by forskolin (Morgan et al., 1991) 
• Liver 

o Activation of phosphorylase and inactivation of glycogen synthase in 
response to fluoride in the presence of aluminum chloride in 
hepatocytes (Blackmore et al., 1985) 

• Kidney 
o Ion transporting processes affected by aluminofluoride complexes in 

kidney tubular cells: stimulation of adenylate cyclase; inhibition of 
amiloride-sensitive Na/H exchange regulated by camp-dependent 
protein kinase; enhanced epidermal growth factor-stimulated 
prostaglandin production; mimicked vasopressin and bradykinin 
induced calcium mobilization (Zhou et al., 1990) 

• Blood cells 
o Induced shape changes and aggregation in platelets (Rendu et al., 

1990) 
o Impaired polymerization-depolymerization cycle of tubulin (Chabre, 

1990) 
o RBCs lost membrane material, size decreased (Strunecka et al., 1991) 

• Osteoblasts and osteoclasts 
o Enhanced stimulation of inorganic phosphate transport in osteoblasts 

(Caverzasio et al., 1996) 
o Exposure of osteoclasts to aluminofluoride complexes resulted in a 

marked concentration-dependent inhibition of bone resorption 
(Moonga et al., 1993) 

• Energy metabolism 
o Inhibited mitochondrial ATPase activity in the presence of 

aluminofluoride complexes (Lunardi et al., 1988) 
 
EPA states that “cryolite has already been evaluated in a number of toxicity studies…The 
oral exposure to cryolite in the many toxicity studies with different animal species has 
allowed evaluation of the toxicity potential for cryolite and its aluminum and fluoride 
degradation products and complexes” (EPA, 6 Sept 2011, p.2). However, EPA fails to 
realize that the toxicity tests conducted thus far for cryolite could not possibly have 
analyzed the numerous physiological and biochemical actions of aluminofluoride 
complexes in various cells and tissues, especially with reference to the effects on G 
proteins and cellular signaling pathways.  
2.6. According to EPA’s Cryolite Final Work Plan Registration Review, “EPA also 
solicited comments, through PWP, on three specific topics: environmental justice, water 
body impairment, and trade irritants” but that “No comments or information were 
received during the comment period concerning these issues” (EPA, Dec 2011, p.4).  
 
FAN’s previous submission included substantive comments on both environmental justice 
and water body impairments.  
 
Section 3.6 of FAN’s submission is reproduced here in its entirety:  
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According to OPP (EPA OCSPP, 2011b, p. 9), “The Office of Pesticide Programs (OPP) 
typically considers the highest potential exposures from the legal use of a pesticide when 
conducting human health risk assessments, including, but not limited to, people who 
obtain drinking water from sources near agricultural areas, the variability of diets within 
the U.S. (including different ages, regions, and ethnicities), and people who may be 
exposed when harvesting crops.” However, there are a number issues regarding fluoride 
exposure that fall within the realm of environmental justice concerns that OPP has not 
addressed. Several sub-populations have been shown to be disproportionately harmed by 
fluoride’s toxicity, including low-income people, certain minority groups, and infants and 
children. 
 
OPP’s recent aggregate risk assessment for fluoride was based on OW’s analysis of 
fluoride, which included flawed methodology, inappropriate assumptions, and refusal to 
consider the voluminous scientific evidence indicating that the harmful effects of fluoride 
exposure extend beyond just the teeth. The decision by OPP to reduce the FQPA Safety 
Factor for fluoride to 1X was determined via similar parameters, based largely on OW’s 
findings. 
 
However, as discussed in Section 2.4., OW’s use of a safety factor of 1 is scientifically 
unjustified. OW defends their use of an uncertainty factor of 1 as follows: 
 

In establishing an estimated oral RfD for fluoride, data on nutritional benefit were 
assessed in combination with the data on severe dental fluorosis to define a level 
that provides anticaries protection without causing severe dental fluorosis when 
consumed daily for a lifetime. Conventional application of uncertainty factors is 
not always appropriate when carrying out a risk assessment for nutrients and 
other beneficial substances, especially when there is a relatively small difference 
between the levels that satisfy need and those that cause adverse effects. For this 
reason the total uncertainty factor applied was 1. (EPA OW, 2010a, p. 105) 

 
By using a safety factor of 1, OW is claiming that the full range of sensitivity to fluoride 
among the American population in 2011—with its vast spectrum of racial, ethnic, and 
socioeconomic groups—was completely accounted for by a study of approx 5000 
children in the 1930s. This is quickly countered by the fact that all children in the Dean 
(1942) study were white. However, numerous studies indicate that black children are 
more susceptible to dental fluorosis (and probably other harmful effects of fluoride) than 
are white children. Using an uncertainty factor of 1 here is tantamount to perpetrating 
environmental injustice against black children. 
 
The National Research Council 1993 Review (NRC, 1993) reported four earlier studies 
showing that ethnicity plays a role in the effects of fluoride: 
 

• Russell (1962), in the Grand Rapids fluoridation study, noted that fluorosis was 
twice as prevalent among African-American children as white children. 

• In the Texas surveys in the 1980s, the odds ratio for African-American children 
having dental fluorosis, compared with Hispanic and non-Hispanic white 
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children, was 2.3 (Butler et al., 1985). 
• Dental fluorosis also tended to be more severe among African-American children 

than white children in the Georgia study (Williams and Zwemer, 1990), although 
the difference was not statistically significant. 

• In Kenya, prevalence and number of severe cases were unexpectedly high when 
related to fluoride concentrations in drinking water (Manji et al., 1986), although 
nutritional factors could have confounded these results. The reasons for these 
findings are unknown and do not seem to have been explored further. 

 
Data published in CDC's Morbidity and Mortality Weekly Report in 2005 (Beltrán- 
Aguilar et al., 2005) show that Black and Mexican Americans have significantly higher 
levels of the worst forms of dental fluorosis than do Whites, as shown in Table 5. 
 

 
 
Table 5. Enamel fluorosis* among persons aged 6-39 years, by selected characteristics— 
United States, National Health and Nutrition Examination Survey, 1999-2002. Source: 
Beltrán-Aguilar et al., 2005. 
 
While EPA acknowledges the results of a study by Sohn et al. (2001) that “Fluid intake 
was significantly associated with age, sex, socioeconomic status, and race and ethnicity,” 
OW failed to include this association in its risk assessment (EPA OW, 2010a). Sohn et al. 
(2001) states “The effect of race or ethnicity and socioeconomic status (SES) on fluid 
consumption were particularly noticeable,” with African American children consuming 
significantly more plain water and less milk than other racial or ethnic groups (white 
children consumed the least amount of total fluid and plain water), and children from the 
low SES group consuming significantly more plain water and less milk than higher SES 
groups. A paper in the 2009 Journal of Public Health Dentistry reviewed the available 
research and concluded that “African-American children, and/or children of lower SES, 
are 
ingesting significantly more fluoride than children who are higher on the social scale. 
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They may be therefore at higher risk for fluorosis.” (Sohn et al., 2009) 
 
There may be several reasons why black children are more susceptible to developing 
dental fluorosis than white children. In addition to ingesting more fluoride (as indicated 
above) it may also reflect dietary differences. Some black children are lactose intolerant 
and therefore have less protective calcium and less vitamin D in their diets. Dark 
pigmentation reduces the synthesis of Vitamin D in the skin at a given level of sunlight, 
and reduction of sunlight by inner-city pollution may be a further factor. Another 
possible association was raised by Leite et al. (2011). In this study the authors found that 
rats treated with both lead and fluoride had worse dental fluorosis than rats treated with 
fluoride alone. Thus it is possible that children from inner city areas that have already 
been compromised with lead exposure will be more susceptible to developing dental 
fluorosis. One can only assume that OW did not recognize the lack of Environmental 
Justice inherent in its use of an uncertainty factor of 1. However, whether it realized it or 
not, in developing this RfD in this manner, OW simply failed to protect vulnerable 
minorities in the population. This is clearly in violation of a U.S. Executive Order 
(12898, 
1994) and one of the stated goals of EPA administrator Lisa Jackson (EPA, 2011a). 
 
OPP should be aware that there are gross disparities in the racial and socioeconomic 
demographics of agricultural laborers—those most directly affected by the application of 
cryolite to crops. Approximately 97% of all agricultural usage of cryolite in the United 
States is in California (GfK Kynetec, 1998-2008; EPA OCSPP, 2010, p. 2). According to 
the National Agricultural Workers Survey of 2005, 99% of all farmworkers interviewed 
in 
California were Hispanic. Forty-three percent of all individual farmworkers, and 30% of 
farmworker families earned less than $10,000 per year, and 22% of California 
farmworkers had annual incomes below the federal poverty level (Aguirre International, 
2005). 
 
Regarding the issue of water body impairments, Section 1 (Introduction) of FAN’s (2011) 
submission states: 
 

OPP states that “Cryolite is not identified as a cause of impairment for any water 
bodies listed as impaired under section 303(d) of the Clean Water Act” (EPA 
OCSPP, 2011a, p.22). However, it should be acknowledged that two of the 
degradation products of cryolite, aluminum and fluoride, are among the major 
causes of impairment of water bodies in the United States. Aluminum (TMDLs: 
1974) is second only to iron as the most frequent cause of impairment in the 
Specific State Pollutants that make up the National Metals (other than mercury) 
Pollutant group (EPA, 2011b), while fluoride (TMDLs: 78) is the most frequent 
cause of impairment in the Specific State Pollutants that make up the National 
Toxic Inorganics Pollutant group (EPA, 2011c). According to EPA, agriculture is 
indicated as a probable source contributing to impairments affecting more rivers, 
streams, lakes, reservoirs, ponds, and wetlands that virtually any other source 
(EPA, 2011d, National Probable Sources Contributing to Impairments). Among 
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the probable sources that make up the National Agricultural Probable Source 
Group is runoff from agricultural lands. 
 
Cryolite contains approximately 55% fluorine and 13% aluminum (EPA OCSPP, 
2011a, Table 4, p. 10). Thus, the more than 1.2 million pounds of active 
ingredient used on agricultural crops (EPA, 2010b, p. 2) contribute over 660,000 
pounds of fluorine and more than 156,000 pounds of aluminum to the 
environment each year. These estimates do not include use of cryolite on 
ornamental plants, unreported registered usage (e.g. small acerage crops), or non-
agricultural use sites (e.g. turf, post-harvest, mosquito control, etc.). In fact, 
according to EPA “There are no usage data for cryolite from our available sources 
on ornamental plants and nursery crops” (EPA OCSPP, 8 Sept 2010, p.3), 
although the California Department of Pesticide Regulation estimates that 1,850 
pounds of cryolite were used on nursery stocks in 2008. 

 
 
2.7. Despite declarations in previous documents that “most present day supplies of 
cryolite pesticide products are synthetically produced” (EPA OCSPP, 2011a, p. 9), 
EPA’s Final Work Plan (EPA, Dec 2011) seems to ignore this fact completely. 
 
EPA’s Final Work Plan states that “Cryolite is a naturally-occurring mineral of sodium 
aluminum fluoride, and is part of the inorganic fluorine chemical family” (EPA, Dec 
2011, p.3). While EPA acknowledged FAN’s comments on the synthetic nature of 
cryolite used for agricultural applications, stating that “[FAN] believe the synthetic 
cryolite is chemically different than natural cryolite due to the presence of impurities” 
(EPA, 20 Sept 2011), EPA failed to respond to this concern. 
 
As “the type of cryolite (synthetic cryolite versus natural cryolite; cryolite, which is fine 
ground versus cryolite consisting of larger particles) also influences amount of oral 
absorption” (ECHA Annex 1, 2010), we request that EPA make public the type (natural 
or synthetic) of cryolite used in all animal studies and ecological risk assessments, and 
distinguish for the public those crops which are treated with naturally-occurring cryolite 
and those treated with synthetic cryolite. 
 
 
3. Conclusions 
 
While FAN applauds the decision by EPA’s EFED to include an avian reproduction 
study (850.2300) for cryolite, numerous other concerns were raised by FAN in our 
previous submission (FAN, 5 Jul 2011) that were not adequately addressed prior to 
release of the Amended Cryolite Final Work Plan Registration Review (EPA, December 
2011).  
 
FAN thus requests the following: 
 
1. EPA to phase out the use of cryolite as it does not meet the safety standard in FFDCA 
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Section 408. 
 
2. EPA to mandate Developmental Toxicity Tests via oral administration of synthetic 
cryolite to enable it to study the effects of fluoride, aluminum, and the fluoroaluminum 
compounds. The animal lab chow that is fed to the animals must contain the lowest levels 
of fluoride and aluminum possible. A histological examination of the brains, kidney, and 
bone should accompany the requirements for these tests. 
 
3. A field study needs to be undertaken that involves various vegetables and fruits that 
have cryolite tolerances. This food should be grown in soil with and without cryolite and 
at the end of the growing season this food should be analyzed for its aluminum content. 
The level of ph and aluminum content of the soil should be recorded.  
 
4. EPA to release to the public all animal studies performed with cryolite.  
 
5. EPA to release its documents in a format that allows the public to search them. 
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