

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

Date: 23-January-2007

- Subject: **Tetraconazole. Dietary Exposure and Risk Assessment.** Application of Tetraconazole to Pecan, Sugar Beet, and Soybean. PC Code: 120603. DP No.: 321637. Decision No.: 359652. Registration No.: 5F6971.
- From: Tom Bloem, Chemist Registration Action Branch 1/Health Effects Division (RAB1/HED; 7509P)
- Through: Susan Stanton, Environmental Scientist, Reregistration Action Branch 3/HED Mohsen Sahafeyan, Chemist, RAB1/HED Dietary Exposure Science Advisory Committee (DESAC) Secondary Review

George Kramer, Ph.D., Senior Chemist RAB1/HED (7509P)

To: Mary Clock-Rust, Chemist RAB1/HED (7509P)

Executive Summary

The residues of concern following application of tetraconazole includes compounds which HED has determined to be toxicologically different from tetraconazole. The current memorandum pertains only to exposure to tetraconazole and those compounds which HED has determined are toxicologically equivalent to tetraconazole (information concerning exposure to the remaining compounds can be found in the HED risk assessment; D331476, M. Clock-Rust *et al.*, in draft).

Acute, chronic, and cancer dietary risk assessments were conducted using the Dietary Exposure Evaluation Model - Food Consumption Intake Database (DEEM-FCID[™], ver. 2.03) which incorporates the food consumption data from the USDA's Continuing Surveys of Food Intakes by Individuals (CSFII; 1994-1996 and 1998). These analyses were conducted in support of the proposed application of tetraconazole to soybean (Section 3 Registration), sugar beet (nationwide Section 3 Registration), peanut (Section 3 Registration), and turf (Section 3 Registration). The following paragraphs are summaries of the acute, chronic, and cancer analyses.

Acute: The tier 1 acute analysis (food and water; water estimate derived from the proposed turf application scenario) resulted in exposure estimate for females 13-49 years old less than HED's level of concern (3% aPAD; acute endpoint of concern was not identified for the general

population including infants and children). Since the turf water estimates resulted in an unacceptable cancer risk by themselves (see below) and registration for application of tetraconazole will most likely not be established, the acute analysis was repeated with exclusion of the turf use (water estimate derived from the pecan application scenario is used). The resulting exposure estimate for females 13-49 years old is less than HED's level of concern (<1% aPAD).

Chronic: The chronic analysis (food and water; water estimate derived from the proposed turf application scenario) was refined through the incorporation of empirical processing factors, average field trial residues, and average residues from the feeding studies (100% crop treated assumed). The resulting exposure estimates were less than HED's level of concern (\leq 76% cPAD; all infants <1 year old were the most highly exposed population subgroup). Since the turf water estimates resulted in an unacceptable cancer risk by themselves (see below) and registration for application of tetraconazole will most likely not be established, the chronic analysis was repeated with exclusion of the turf use (water estimate derived from the pecan application scenario is used). The resulting exposure estimates were less than HED's level of concern (\leq 10% cPAD; all infants <1 year old were the most highly exposed population subgroup).

Cancer: Using only the water estimates from application to turf, including the turf estimate generated if the use is restricted to golf courses, the cancer risk for the U.S. population was $\geq 4.3 \times 10^{-6}$ (food residues were not included). Therefore, the water estimates resulting from application to turf were excluded for the analyses discussed below.

A cancer analysis was performed using empirical processing factors, average field trial residues, average residues from the feeding studies, projected percent crop treated estimates, and the water estimate derived from the pecan application scenario (4.97 ppb; 8 x 0.125 lb ai/acre; highest estimate when turf is excluded). The resulting exposures estimates yielded a cancer risk for the U.S. population of 3.1×10^{-6} . A complete commodity analysis indicates that drinking water contributes 78% of the total exposure, soybean oil contributes 18of the total exposure, and the remaining food commodities contribute 4% of the total exposure. Excluding the turf and pecan water estimates, the next highest water estimate results from the sugar beet application scenario (3.77 ppb; 2 x 0.10 lb ai/acre). Using the same food residue estimates as that from the previous analysis except for the elimination of pecans, the cancer risk for the U.S. population is 2.5×10^{-6} .

I. Introduction

Dietary risk assessment incorporates both exposure and toxicity of a given pesticide. For acute and chronic assessments, the risk is expressed as a percentage of a maximum acceptable dose (i.e., the dose which HED has concluded will result in no unreasonable adverse health effects). This dose is referred to as the population-adjusted dose (PAD). The PAD is equivalent to the point of departure divided by the required safety factors. For acute and non-cancer chronic exposures, HED is concerned when estimated dietary risk exceeds 100% of the PAD. HED is generally concerned when estimated cancer risk exceeds one in one million. References which discuss the acute and chronic risk assessments in more detail are available on the EPA/pesticides web site: "Available Information on Assessing Exposure from Pesticides, A User's Guide," 6/21/2000, web link: <u>http://www.epa.gov/fedrgstr/EPA-PEST/2000/July/Day-12/6061.pdf</u>; or see SOP 99.6 (8/20/99). The most recent dietary risk assessment for tetraconazole was conducted by L. Jones (D314309, 8-Mar-2005; risk assessment document).

II. Residue Information

Residues of Concern in Plants and Livestock: Table 1 is a summary of the residues of concern in plants and livestock (for a complete discussion concerning these conclusions, refer to D331476, M. Clock-Rust *et al.*, in draft). HED has concluded that the toxicological effects resulting from exposure to 1,2,4-triazole (T), triazolyl alanine (TA), triazolyl acetic acid (TAA), triazolyl hydroxypropionic acid (THP), and all labile conjugates of these compounds and M14360(C-1)-alcohol are different from that resulting from exposure to tetraconazole; HED concluded that the toxicity of the remaining metabolites are identical to that of tetraconazole. The current dietary exposure analysis pertains only to exposure to those compounds which HED has concluded are toxicologically similar to tetraconazole (i.e. tetraconazole, M14360-alcohol (free and conjugated), M14360-acid, M14360-DFA, and M14360-hydroxydetriazolyl-O-malonyldiglucoside); Information concerning exposure to the remaining compounds can be found in the HED risk assessment; D331476, M. Clock-Rust *et al.*, in draft).

Table 1. Residu	Table 1. Residues for Tolerance Expression and Risk Assessment						
Matrix	Residues included in Risk Assessment	Residues included in Tolerance Expression					
Shelled Pea and Bean	tetraconazole and 1,2,4-triazole (T), triazolyl alanine (TA), triazolyl acetic acid (TAA), and all labile conjugates of these compounds	tetraconazole					
Remaining Plants	tetraconazole, M14360-alcohol (free and conjugated), M14360-acid, M14360-DFA, M14360-hydroxydetriazolyl-O-malonyldiglucoside, and T, TA, TAA and all labile conjugates of these compounds	tetraconazole					
Livestock	tetraconazole, M14360-alcohol (free and conjugated), M14360-acid, M14360-DFA, M14360(C-1)-alcohol (free and conjugated), M14360- hydroxydetriazolyl-O-malonyldiglucoside, and T, TA, THP, and TAA and all labile conjugates of these compounds	tetraconazole					
Rotational Crops	tetraconazole, M14360-acid, M14360-DFA, M14360(C-1)-alcohol (free and conjugated), and TA, THP, and TAA and all labile conjugates of these compounds	tetraconazole					
Drinking Water	tetraconazole	not applicable					

Currently Established Tolerances and HED Recommended Tolerances: Tolerances for residues of tetraconazole *per se* have been established in/on sugar beet (regional registration) and livestock commodities (40 CFR 180.557). A Section 18 soybean (forage and hay may not be fed to livestock) registration has also been granted which resulted in the setting of temporary soybean and poultry tolerances. The petitioner is currently requesting a national sugar beet registration and Section 3 registrations for turf, soybean, pecan, and peanut. HED has reviewed the residue chemistry data submitted in support of these requests and concludes that the tolerances listed in the Table 2, for residues of tetraconazole *per se*, are appropriate (D331594, T. Bloem, 23-Jan-2007; D329379, T. Bloem, 23-Jan-2007; D327489, T. Bloem, 23-Jan-2007).

HED notes that the proposed peanut application scenario prohibits the feeding of peanut hay to livestock and the registered soybean Section 18 and the proposed soybean Section 3 registration prohibit the feeding of soybean forage and hay to livestock. In addition, sugar beet tops are being eliminated as a feed commodity from OPPTS 860.1000 (communication from J. Stokes, HED). Based on the restrictions of the labels and with the elimination of sugar beet tops as a feed commodity, the ruminant dietary burden has been greatly reduced and HED has recommended for the elimination of the currently established milk and cattle, goat, horse, and sheep tolerances in favor of the tolerances listed in Table 2 (D329379, T. Bloem, 23-Jan-2007). In addition, HED notes that the currently established soybean and poultry tolerances were

recommended as part of the soybean Section 18 registration. Since the soybean application scenario approved as part of the Section 18 registration and the soybean application scenario being proposed as part of the Section 3 registration are identical and since HED has performed a complete review of the soybean and poultry magnitude of the residue data as part of the current review, HED concludes that the recommended soybean and poultry tolerances are appropriate (i.e., the poultry and soybean tolerances from Table 2 were used for the current assessment).

Table 2: HED-Recommended Tolerances					
Commodity	HED Recommended Tolerance (ppm)				
beet sugar, root	0.05				
beet, sugar, dried pulp	0.15				
beet, sugar, molasses	0.15				
peanut	0.03				
peanut, oil	0.10				
pecan	0.04				
soybean, seed	0.15				
soybean, refined oil	0.80				
aspirated grain fractions	1.0				
poultry, meat	0.01				
poultry, fat	0.05				
poultry meat byproducts	0.01				
eggs	0.02				
cattle, meat	0.01				
cattle, liver	0.20				
cattle, fat	0.02				
cattle, meat byproducts (except liver)	0.01				
milk	0.01				
milk, fat	0.25				
goat, meat	0.01				
goat, liver	0.20				
goat, fat	0.02				
goat, meat byproducts (except liver)	0.01				
hog, meat	0.01				
hog, liver	0.05				
hog, fat	0.01				
hog, meat byproducts (except liver)	0.01				
horse, meat	0.01				
horse, liver	0.20				
horse, fat	0.02				
horse, meat byproducts (except liver)	0.01				
sheep, meat	0.01				
sheep, liver	0.20				
sheep, fat	0.02				
sheep, meat byproducts (except liver)	0.01				

Residue Estimates for the Acute and Chronic Analyses: As stated earlier in the document, HED concluded that the toxicity of T, TA, TAA, THP, and all labile conjugates of these compounds and M14360(C-1)-alcohol are different from that resulting from exposure to tetraconazole. Since the current document is concerned with exposure to compounds which HED has determined are toxicologically similar to tetraconazole, these compounds were not considered.

The petitioner submitted field trial and processing data for tetraconazole *per se*. These data are sufficient for soybean tetraconazole risk assessment; however, the residues of concern for a tetraconazole risk assessment in sugar beet, pecan, and peanut includes tetraconazole, M14360-alcohol (free and conjugated), M14360-acid, M14360-DFA, and M14360-hydroxydetriazolyl-O-malonyldiglucoside. The magnitude of these residues were estimated based on the tetraconazole metabolites to tetraconazole residues ratios from the metabolism studies (sugar beet leaves: 0.06 (0-day preharvest interval (PHI) and 0.32-0.33 (23-35 day PHI); root: 0.26 (23-day PHI); wheat

straw: 0.02; wheat grain - metabolites were not identified; grape metabolism studies only included parent as a reference standard with none of the metabolites identified). HED concludes that the sugar beet root residue ratio is appropriate for the currently proposed crops (sugar beet, peanut, and pecan; these compounds were not identified as residues of concern in soybean seed). Table 4 is a summary of the tetraconazole *per se* residues, estimated residues of the metabolites of concern for a tetraconazole risk assessment, and total residues.

The livestock tolerances are based on residues of tetraconazole *per se* derived from the consumption of fed commodities which contain tetraconazole *per se*; however, as stated above, the residues of concern for a tetraconazole risk assessment in both feed (excluding soybean feed commodities) and livestock are tetraconazole, M14360-alcohol (free and conjugated), M14360-acid, M14360-DFA, and M14360-hydroxydetriazolyl-O-malonyldiglucoside. Therefore, the acute and chronic dietary assessment included livestock residues which were calculated based on dietary burdens which included all of the residues of concern for a tetraconazole risk assessment. This dietary burden was then used to calculate residues in the livestock tissues based on the tetraconazole *per se* transfer coefficients (i.e., assessments assumes that transfer coefficient for the tetraconazole metabolites are identical to tetraconazole). Table 3 is a summary of the dietary burden calculations and Table 5 is a summary of the residue estimates in the livestock commodities in Table 5 were <LOQ, LOQ residues were assumed.

Table 3: Livestock Dietary Burden Cal	culations	for Refinemen	t of the Chroni	c Dietary Analy	vsis	
commodity ¹	%	% dry matter	residue	(ppm)	dietary burden ²	
commonly	diet ¹	70 dry matter	acute	chronic	acute	chronic
		beef cat	tle			
sugar beet dried pulp (R; 70%)	20	88	0.189	0.053	0.043	0.008
sugar beet molasses (CC; 70%)	10	75	0.189	0.071	0.025	0.007
beanut meal (PC; 77%) ³	15	85	0.063	0.016		0.002
soybean seed (PC; 27%) ³	15	89	0.15	0.046	0.025	
soybean hull (R; 27%)	20	90	0.15	0.046	0.033	0.003
soybean aspirated grain fractions (CC;	5	85	1.0	0.345	0.059	0.005
otal	70				0.186	0.025
		dairy cat	tle			
sugar beet dried pulp (R; 70%)	20	88	0.189	0.053	0.043	0.008
sugar beet molasses (CC; 70%)	10	75	0.189	0.071	0.025	0.007
beanut meal (PC; 77%) ³	15	85	0.063	0.016		0.002
soybean seed (PC; 27%) ³	15	89	0.15	0.046	0.025	
soybean hull (R; 27%)	20	90	0.15	0.046	0.033	0.003
otal	80				0.127	0.020
		poultry	/			
soybean meal (PC; 27%)	35		0.15	0.046	0.052	0.004
soybean hull (R; 27%)	10		0.15	0.046	0.015	0.001
otal	45				0.068	0.006
		hog				
soybean seed (PC; 27%)	25		0.15	0.046	0.038	0.003
otal	25				0.038	0.003

from revised Table 1; R = roughage, CC = carbohydrate concentrate, PC = protein concentrate; peanut hay and soybean forage and hay are not to be fed to livestock (therefore not included); percentage refers percent crop treated (see attachment 1) which were used in the chronic dietary burden calculations

² beef/dairy cattle dietary burden = residue x % diet \div % dry matter; poultry/hog dietary burden = residue x % diet; chronic calculations included the percent crop treated estimates

³ peanut meal was included in the chronic dietary burden calculations instead of soybean seed due to the differences in the % crop treated for peanut and soybean (inclusion of peanut meal results in a higher dietary burden)

Table 4: Food/Fe			mates f	or Acu	te, Chroi	nic, and Cancer Analyses
matrix		onazole e (ppm)	factor ¹	total 1	residue ²	comments
matrix	acute	chronic/ cancer	lactor	acute	chronic/ cancer	
soybean (seed, hulls, and meal)	0.15	0.046	3	0.15	0.046	acute tetraconazole residue = tolerance residue chronic tetraconazole residues = average field trial residue (46614332.der.doc) multiplied by 2x to account for insufficient analytical method (see text above)
soybean oil	0.80	0.212	3	0.80	0.212	acute tetraconazole residue = tolerance residue chronic tetraconazole residues = average soybean seed field trial residue multiplied by the average processing factor 4.6x (46614320.der.doc) multiplied by 2x to account for insufficient analytical method (see text above)
soybean aspirated grain fractions	1.0	0.345	3	1.0	0.345	acute tetraconazole residue = tolerance residue chronic tetraconazole residues = average soybean seed field trial residue multiplied by the average processing factor 7.5x (46614320.der.doc) multiplied by 2x to account for insufficient analytical method (see text above)
sugar beet root sugar	0.05	0.002	0.26	0.063	0.0025	acute tetraconazole residue = tolerance residue chronic tetraconazole residues = average field trial residue multiplied by 0.50 based on reduction in the application rate and side-by-side field trial data multiplied by 0.1x processing factor (D279986, W. Donovan, 17-May-2002; ChemSAC minutes 15- May-2002; D310763, T. Bloem, 24-Nov-2004)
sugar beet molasses	0.15	0.056	0.26	0.189	0.071	acute tetraconazole residues = tolerance residue chronic tetraconazole residues = average field trial residue multiplied by 0.50 based on reduction in the application rate and side-by-side field trial data and multiplied by 2.8x processing factor (D279986, W. Donovan, 17-May-2002; ChemSAC minutes 15- May-2002; D310763, T. Bloem, 24-Nov-2004)
sugar beet dried pulp	0.15	0.042	0.26	0.189	0.053	acute tetraconazole residues = tolerance residue chronic tetraconazole residues = average field trial residue multiplied by 0.50 based on reduction in the application rate and side-by-side field trial data and multiplied by 2.1x processing factor (D279986, W. Donovan, 17-May-2002; ChemSAC minutes 15- May-2002; D310763, T. Bloem, 24-Nov-2004)
peanut (mutmeat and meal)	0.03	0.013	0.26	0.038	0.016	acute tetraconazole residue = tolerance residue chronic tetraconazole residues = average field trial residue (D259231, W. Donovan, 18-May-2000)
peanut oil	0.10	0.043	0.26	0.126	0.055	acute tetraconazole residues = tolerance residue chronic tetraconazole residues = average peanut field trial residue multiplied by 3.34x processing factor (D259231, W. Donovan, 18- May-2000)
pecan	0.04	0.007	0.26	0.050	0.009	acute tetraconazole residue = tolerance residue chronic tetraconazole residues = average field trial residue (46037601.der.doc)

1 factor = residue ratio of non-free triazole tetraconazole metabolites of concern to tetraconazole from the metabolism studies; sugar beet root factor (0.26x) used for all commodities ² total residue = residue + (as it 1 a) (2)

total residue = residue + (residue)(factor)

3 the non-free triazole tetraconazole metabolites are not residues of concern in soybean seed

D321637

Fable 5: Livesto		e residue from f						
	tetraconazoro	(ppm)	lecung study	tet	raconazole transfer coeffcie	zole transfer coeffcients ²		stimates ³
matrix		middle dietary		lowest dietary burden	middle dietary burden	highest dietary burden	acute	chronic
	burden	burden	burden	5	v cattle	ingroot aroung curaon	ucuto	••
			r					
nilk ⁴	< 0.003	max = 0.016;	max = 0.048		based on max res - 0.016	based on max res - 0.014	0.00199	0.000113
liik		avg = 0.006	avg = 0.019		based on avg res - 0.006		0.001//	0.000115
					re significantly higher than			
nilk fat	feeding studie	s, HED conclud	led that a 25x con		fat was appropriate (milk fa	t residue = milk residue x	0.050	0.002825
				25)		r		
kimmed milk	< 0.003	< 0.003	max = 0.003			based on max res - 0.0009	0.000114	0.000018
			avg = 0.003			based on avg res - 0.0009	0.000114	0.000010
eream	max = 0.023	max = 0.125	max = 0.391	based on max res - 0.068		based on max res - 0.115	0.0156	0.00167
iteani	avg = 0.020	avg = 0.073	avg = 0.283	based on avg res - 0.060		based on avg res - 0.083	0.0150	
				beef ca	attle/hog			
ubcutaneous fat	max = 0.003	max = 0.033	max = 0.205		based on max res - 0.032	based on max res - 0.060	beef = 0.0112	beef = 0.00080
ubcutatieous fat	avg = 0.003	avg = 0.029	avg = 0.109		based on avg res - 0.029	based on avg res - 0.032	hog = 0.00229	hog = 0.00009
1.0.	max = 0.029	max = 0.069	max = 0.199	based on max res - 0.085	based on max res - 0.068	based on max res - 0.059	beef = 0.0159	beef = 0.00124
peritoneal fat	avg = 0.016	avg = 0.051	avg = 0.114	based on avg res - 0.046	based on avg res - 0.050	based on avg res - 0.033	hog = 0.00324	hog = 0.000149
	max = 0.007	max = 0.039	max = 0.067	based on max res - 0.021	based on max res - 0.038	based on max res - 0.020	beef = 0.00711	beef = 0.00059
tidney	avg = 0.005	avg = 0.024	avg = 0.055	based on avg res - 0.016	based on avg res - 0.024	based on avg res - 0.016	hog = 0.00145	hog = 0.000072
	max = 0.371	max = 0.662	max = 1.636	based on max res - 1.091	based on max res - 0.649	based on max res - 0.481	beef = 0.203	beef = 0.01973
iver	avg = 0.268	avg = 0.376	avg = 1.345	based on avg res - 0.789	based on avg res - 0.368	based on avg res - 0.395	hog = 0.0415	hog = 0.00237
		max = 0.006	max = 0.015		based on max res - 0.006	based on max res - 0.004	beef = 0.00109	beef = 0.00011
nuscle	< 0.003	avg = 0.005	avg = 0.011		based on avg res - 0.005	based on avg res - 0.003	hog = 0.000224	hog = 0.000014
				po	ultry			- 0
	max = 0.011	max = 0.029	max = 0.081	based on max res - 0.159		based on max res - 0.113		
iver	avg = 0.010	avg = 0.026	avg = 0.073	based on avg res - 0.145	based on avg res - 0.108	based on avg res - 0.102	0.0108	0.00087
• 1	U		max = 0.049			based on max res - 0.069	0.00 <i>4/7</i>	0.000225
tidney	< 0.01	< 0.01	avg = 0.040			based on avg res - 0.056	0.00467	0.000336
	0.01	0.01	max = 0.021			based on max res - 0.029		0.000151
keletal muscle	< 0.01	< 0.01	avg = 0.021			based on avg res - 0.029	0.00200	0.000176
	max = 0.045	max = 0.140	max = 0.456	based on max res - 0.652	based on max res - 0.581	based on max res - 0.639	0.0440	0.00000.0
bdominal fat	avg = 0.038	avg = 0.115	avg = 0.387	based on avg res - 0.551			0.0443	0.003304
kin and	max = 0.019	max = 0.044	max = 0.181	based on max res - 0.275	based on max res - 0.183	based on max res - 0.253		0.0010=0
ubcutaneous fat	avg = 0.015	avg = 0.041	avg = 0.164	based on avg res - 0.217	based on avg res - 0.170	based on avg res - 0.230	0.0187	0.001378
	max = 0.011	max = 0.034	max = 0.135	based on max res - 0.159	based on max res - 0.141	based on max res - 0.189		
ggs ⁵	avg = 0.008	avg = 0.025	avg = 0.089	based on avg res - 0.116	based on avg res - 0.104	based on avg res - 0.125	0.0129	0.000748

¹ ruminant feeding study - D254411, W. Donovan, 18 May-2000 (dietary burdens of 0.34 ppm, 1.02 ppm, and 3.4 ppm); poultry feeding study -46614307.der.wpd (dietary burdens of 0.069 ppm, 0.241 ppm, and 0.714 ppm)

 2 transfer coefficient = tetraconazole residue \div dietary burden; for the acute analysis the residues in bold were < tolerance therefore defaulted to the tolerance

³ residue estimate = dietary burden x transfer coefficient; the highest transfer coefficient derived from a dosing level which resulted in quantifiable residues was used

⁴ residues in milk peaked on the third day of dosing; therefore, the average residue is for all samples collected on day 3 and after

⁵ residues in egg peaked on the tenth day of dosing; therefore, the average residue is for all samples collected on day 10 and after

III. Drinking Water Data

EFED provided modeled ground (Screening Concentration In Ground Water (SCIGROW)) and surface (Pesticide Root Zone Model (PRZM 3.12) and Exposure Analysis Modeling System (EXAMS 2.98.04)) water concentrations for tetraconazole *per se* (EFED memorandum prepared by I. Maher, December-2006). Table 6 is a summary of the estimates provided by EFED. The water estimates were incorporated directly into the dietary exposure analysis via the water sources direct (all sources) and indirect (all sources) commodities. The water models and their description are available at the EPA internet site: http://www.epa.gov/ oppefed1/models/water/.

	state and application method		ppb (µg/l)	
crop	modeled	peak	yearly	30-year annual averag
		ground water		
sugar beet			0.36	
turf			10.0	
peanut			0.72	
soybean			0.27	
becan			1.79	
		surface water		
	Minnesota; aerial spray ¹	7.22	4.97	3.77
maar baat	Minnesota; ground spray ¹	6.33	4.40	3.20
sugar beet	California; aerial spray ¹	2.12	1.43	1.30
	California; ground spray ¹	0.86	0.59	0.52
	North Carolina; aerial spray ²	10.36	4.03	3.02
peanut	North Carolina; ground spray ²	10.02	3.83	2.78
soybean	Mississippi; aerial spray ³	1.29	0.59	0.47
soybean	Mississippi; ground spray ³	1.18	0.56	0.42
2000	Georgia; aerial spray ⁴	20.01	7.26	4.97
pecan	Georgia; ground spray ⁴	19.46	6.79	4.41
	Pennsylvania; aerial spray	118.00	77.13	59.90
urf	Pennsylvania; ground spray	87.40	57.55	41.03
.u11	Florida; aerial spray	77.52	44.74	36.94
	Florida; ground spray	57.70	33.77	25.97
	Pennsylvania; aerial spray ⁵	40.12	26.22	20.37
alf aguras turf	Pennsylvania; ground spray ⁵	29.72	19.57	13.95
golf course turf	Florida; aerial spray ⁵	26.36	15.21	12.56
	Florida; ground spray ⁵	19.62	11.48	8.83
	EEC multiplied by 0.87 to account	for percent of basin cropp	ed (assumes 100% o	f the crop treated)
	EEC multiplied by 0.67 to account			
	EEC multiplied by 0.41 to account			
EXAMS	EEC multiplied by 0.85 to account	for percent of basin cropp	ed (assumes 100% o	f the crop treated)

⁵ EXAMS EEC multiplied by 0.34 to account for percent of basin cropped (assumes 100% of the crop treated)

IV. DEEM-FCID™ Program and Consumption Information

Acute and chronic dietary exposure assessments were conducted using DEEM-FCID[™] (ver. 2.03) which incorporates consumption data from USDA's CSFII, 1994-1996 and 1998. The 1994-96, 98 data are based on the reported consumption of more than 20,000 individuals over two non-consecutive survey days. Foods "as consumed" (e.g., apple pie) are linked to EPA-defined food commodities (e.g. apples, peeled fruit - cooked; fresh or N/S; baked; or wheat flour - cooked; fresh or N/S, baked) using publicly available recipe translation files developed jointly by USDA/ARS and EPA. For chronic exposure assessment, consumption data are averaged for the entire U.S. population and within population subgroups, but for acute exposure assessment are retained as individual consumption events. Based on analysis of the 1994-96, 98 CSFII consumption data, which took into account dietary patterns and survey respondents, HED concluded that it is most appropriate to report risk for the following population subgroups: the general U.S. population, all infants (<1 year old), children 1-2, children 3-5, children 6-12, youth 13-19, adults 20-49, females 13-49, and adults 50+ years old.

For chronic dietary exposure assessment, an estimate of the residue level in each food or foodform (e.g., orange or orange juice) on the food commodity residue list is multiplied by the average daily consumption estimate for that food/food form to produce a residue intake estimate. The resulting residue intake estimate for each food/food form is summed with the residue intake estimates for all other food/food forms on the commodity residue list to arrive at the total average estimated exposure. Exposure is expressed in mg/kg body weight/day and as a percent of the cPAD. This procedure is performed for each population subgroup.

For acute exposure assessments, individual one-day food consumption data are used on an individual-by-individual basis. The reported consumption amounts of each food item can be multiplied by a residue point estimate and summed to obtain a total daily pesticide exposure for a deterministic exposure assessment, or "matched" in multiple random pairings with residue values and then summed in a probabilistic assessment. The resulting distribution of exposures is expressed as a percentage of the aPAD on both a user (i.e., only those who reported eating relevant commodities/food forms) and a per-capita (i.e., those who reported eating the relevant commodities as well as those who did not) basis. In accordance with HED policy, per capita exposure and risk are reported for all tiers of analysis. However, for tiers 1 and 2, any significant differences in user vs. per capita exposure and risk are specifically identified and noted in the risk assessment.

V. Toxicological Information

The HED Hazard Identification Assessment Review Committee (HIARC) met on 14-September-1999 (HED Doc. No. 013765) and 13-May-2004 (TXR No. 0052657) to select endpoints for risk assessment and to evaluate the potential for increased susceptibility of infants and children from exposure to tetraconazole (evaluated according to the February 2002 OPP 10X guidance document). The HED Cancer Assessment Review Committee met on 10-November-1999 and classified tetraconazole as a likely human carcinogen (HED Doc. No. 013948).

The HIARC, based on toxicological considerations recommended for a 1x FQPA. Based on toxicological considerations (evaluated by HIARC) and the residue assumptions used in the dietary analyses (evaluated by the reviewer), it was concluded that the FQPA Safety Factor should be reduced to 1x when assessing dietary exposures. Table 7 summarizes the endpoints used for dietary exposure assessment.

Table 7: Summa	Table 7: Summary of Toxicological Doses and Endpoints for Tetraconazle Dietary Exposure Assessment ¹						
Exposure Scenario	Dose Used in Risk Assessment, UF	FQPA SF* and Dose for Risk Assessment	Study and Toxicological Effects				
Acute Dietary - general population (including infants and children)	None	N/A	No endpoint attributable to a single exposure was identified. This risk assessment is not required.				
Acute Dietary - Females 13-50 years of age	NOAEL = 22.5 mg/kg/day UF = 100 aRfD = 0.225 mg/kg/day	$\mathbf{P}QPA SF = IX$ $\mathbf{aPAD} = \mathbf{aRfD} \div \mathbf{F}QPA SF$ = 0.225 mg/kg	Oral developmental toxicity study - rat Developmental NOAEL = 22.5 mg/kg/day, based on increased incidence of small fetuses, and supernumerary ribs.				
Chronic Dietary - all populations	NOAEL= 0.73 mg/kg/day UF =100 cRfD = 0.0073 mg/kg/day	FQPA SF = 1 $cPAD = cRfD \div FQPA SF$ cPAD = 0.0073 mg/kg/day	Chronic oral toxicity - dog Systemic Toxicity LOAEL = 2.95/3.33 (M/F) mg/kg/day, based on absolute and relative kidney weights and histopathological changes in the male kidney.				
Cancer	Classification: "likely to be carcinogenic to humans" $Q_1^* = 2.30 \times 10^{-2}$, based on male mouse liver benign and/or malignant combined tumor rates.						

NOAEL = No Observed Adverse Effect Level; LOAEL = Lowest Observed Adverse Effect Level; UF = Uncertainty Factor; RfD = Reference Dose; PAD = Chronic Population Adusted Dose = RfD ÷ FQPA SF

VI. Results/Discussion & Conclusions

Acute: The tier 1 acute analysis (food and water (turf application scenario; $4 \ge 1.4$ lb ai/acre)) resulted in exposure estimate for females 13-49 years old of 3% aPAD (see Table 8; acute endpoint of concern was not identified for the general population including infants and children). If the turf use is excluded (water estimate derived from the pecan application scenario is used; 8 ≥ 0.125 lb ai/acre), the resulting exposure estimate for females 13-49 years old is <1% aPAD (see Table 9).

Chronic: The tier 2 chronic analysis (food and water (turf application scenario; 4 x 1.4 lb ai/acre)) incorporated average field trial residues and average residues from the feeding studies (100% crop treated assumed). The resulting chronic exposures estimates were \leq 76% cPAD (all infants <1 year old were the most highly exposed population subgroup; Table 8). If the turf use is excluded (water estimate derived from the pecan application scenario is used; 8 x 0.125 lb ai/acre), the resulting exposure estimates are \leq 10% cPAD (all infants <1 year old were the most highly exposed population scenario is used; 8 x 0.125 lb ai/acre), the resulting exposure estimates are \leq 10% cPAD (all infants <1 year old were the most highly exposed population subgroup; Table 9)

Cancer: Using only the drinking water concentrations resulting from application to turf (food residue excluded), the cancer risk for the U.S. population was $\ge 4.3 \times 10^{-6}$ (Table 10). Therefore, the water estimates resulting from application to turf were excluded for analyses discussed below.

The tier 2 chronic analysis (food and water) incorporated empirical processing factors, average field trial residues, average residues form the feeding studies, projected percent crop treated estimates, and the water estimate derived from the pecan application scenario (4.97 ppb; 8 x 0.125 lb ai/acre; highest estimate when turf is excluded). The resulting exposures estimates yielded a cancer risk for the U.S. population of 3.1×10^{-6} (Table 11). A complete commodity analysis indicates that drinking water contributes 78% of the total exposure, soybean oil contributes 18% of the total exposure, and the remaining food commodities contribute 4% of the total exposure (see attachment 12).

Excluding the turf and pecan water estimates, the next highest water estimate results from the sugar beet application scenario (3.77 ppb; 2 x 0.10 lb ai/acre). Using the same food residue estimates as that from the previous analysis except for the elimination of pecans, the cancer risk for the U.S. population is 2.5×10^{-6} (Table 10).

Table 8: Summary of the Ac	Fable 8: Summary of the Acute and Chronic Dietary Exposure and Risk (all commodities; drinking water included)						
Population	aPAD (mg/kg/day)	Exposure (mg/kg/day) ¹	%aPAD	cPAD (mg/kg/day)	Exposure (mg/kg/day)	%cPAD	
General U.S. Population					0.001724	24	
All Infants (< 1 year old)					0.005564	76	
Children 1-2 years old					0.002629	36	
Children 3-5 years old	no acute er	ndpoint identified	for these	0.073	0.002480	34	
Children 6-12 years old	pop	pulation subgroup	S		0.001717	24	
Youth 13-19 years old					0.001276	18	
Adults 20-49 years old					0.001597	22	
Adults 50+ years old					0.001660	23	
Females 13-49 years old	0.225	0.006168	2.7		0.001587	22	
¹ 95 th percentile (tier 1 ar	nalvsis)	•	•			•	

95th percentile (tier 1 analysis)

Table 9: Summary of the Acute and Chronic Dietary Exposure and Risk (all commodities excluding turf; drinking water included)

Population	aPAD (mg/kg/day)	Exposure $(mg/kg/day)^1$	%aPAD	cPAD (mg/kg/day)	Exposure (mg/kg/day)	%cPAD
General U.S. Population					0.000252	3.4
All Infants (< 1 year old)					0.000735	10.1
Children 1-2 years old					0.000442	6.0
Children 3-5 years old	no acute en	dpoint identified	for these		0.000432	5.9
Children 6-12 years old	pop	oulation subgroup	8	0.073	0.000305	4.2
Youth 13-19 years old					0.000212	2.9
Adults 20-49 years old					0.000222	3.0
Adults 50+ years old					0.000213	2.9
Females 13-49 years old	0.225	0.001603	<1	1	0.000218	3.0

95th percentile (tier 1 analysis)

Table 10: Summary of the Cancer Dietary Exposure and Risk Resulting from Application of Tetraconazole to Turf (only water concentrations resulting from the turf application included; no food)

Included Commodities	Exposure $(mg/kg/day)^1$	0.*	Cancer risk
59.90 (PA aerial spray turf)	0.001263	Q1	2.9×10^{-5}
41.03 (PA ground spray turf)	0.0001203		2.0×10^{-5}
36.94 (FL aerial spray turf)	0.000779		1.8 x 10 ⁻⁵
25.97 (FL ground spray turf)	0.000547	0.023	1.3 x 10 ⁻⁵
20.37 (PA aerial spray golf course turf)	0.000429	0.025	9.9 x 10 ⁻⁶
13.95 (PA ground spray gold course turf)	0.000294		6.8 x 10 ⁻⁶
12.56 (FL aerial spray golf course turf)	0.000265		6.1 x 10 ⁻⁶
8.83 (FL ground spray golf course turf)	0.000186		4.3 x 10 ⁻⁶

exposure for the general U.S. population; HED performs cancer analyses for only the general U.S. population

Table 11: Summary of the Cancer Dietary Exposure and Risk Resulting from all Registered/Proposed Uses Excluding Turf					
Scenario	Population ¹	Exposure (mg/kg/day)	Q_1^*	Cancer risk	
all crops excluding turf	general U.S. population	0.000134	0.023	3.09x 10 ⁻⁶	
all crops excluding turf and pecan	general U.S. population	0.000109	0.025	2.50x 10 ⁻⁶	

exposure for the general U.S. population; HED performs cancer analyses for only the general U.S. population

VII. Characterization of Inputs/Outputs

The acute analysis could be refined through the incorporation of maximum or highest average field trial residues, percent crop treated estimates, and/or monitoring data. The chronic/cancer analyses incorporated average field trial residues, average residues from the feeding studies, and/or projected percent crop treated information and could be refined through the incorporation of monitoring data. A complete commodity analysis conducted for the general U.S. population cancer assessment (all proposed/registered uses excluding turf) indicates that water (78% of the total exposure) and soybean oil (18% of the total exposure) are the major contributors.

VIII. Conclusions

With inclusion of all the proposed/registered uses (including turf), the acute (3% of the aPAD) and chronic (\leq 76% of the cPAD) exposure estimates are less than HED's level of concern. Cancer analyses were performed using only the turf water estimates and resulted in cancer risks greater than HED's level of concern (\geq 4.3 x 10⁻⁶). With exclusion of the turf water estimates and inclusion of all the remaining proposed/registered uses, the cancer risk was 3.1 x 10⁻⁶. With the exclusion of the turf and pecan uses, the cancer risk was 2.5 x 10⁻⁶.

- Attachment 1: BEAD percent crop treated information
- Attachment 2: DEEM-FCID[™] acute exposure estimates (all commodities)
- Attachment 3: DEEM-FCID[™] acute exposure estimates (all commodities excluding turf)
- Attachment 4: DEEM-FCIDTM acute residue file
- Attachment 5: DEEM-FCID[™] chronic exposure estimates (all commodities)
- Attachment 6: DEEM-FCIDTM chronic exposure estimates (all commodities excluding turf)
- Attachment 7: DEEM-FCID[™] chronic residue file
- Attachment 8: DEEM-FCIDTM cancer exposure estimates (all commodities excluding turf)
- Attachment 9: DEEM-FCIDTM cancer residue file will commodities excluding turf
- Attachment 10: DEEM-FCIDTM cancer exposure (all commodities excluding pecan and turf)
- Attachment 11: DEEM-FCID[™] cancer residue file (all commodities excluding pecan and turf)

Attachment 12: Complete Commodity Analysis of Cancer Analysis Performed with all Crops Excluding Turf.

CC with all attachments: Mary Waller/Lisa Jones, RM 21 (RD; 7505P) T. Bloem:S10945:PY:(703)605-0217:7509P

Attachment 1: BEAD percent crop treated information

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460

> OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

SUBJECT: Projected Percent Crop Treated for the Fungicide Tetraconazole on Three Crops: Peanuts, Soybeans, and Sugar Beets.

FROM: Jihad Alsadek, Economist Science Information & Analysis Branch Biological and Economic Analysis Division (7503P)

> Richard Michell, Plant Pathologist Biological Analysis Branch Biological and Economic Analysis Division (7503P)

- **TO:** Mary Waller, Product Manager Fungicide Branch Registration Division (7505P)
- THRU: Diann Sims, Chief Science Information Analysis Branch Biological and Economic Analysis Division (7503P)

Arnet Jones, Chief Biological Analysis Branch Biological and Economic Analysis Division (7503P)

PRP Review: November 29, 2006

I. SUMMARY

This memorandum provides projected percent crop treated (PPCT) values for tetraconazole on three crops (peanuts, soybeans, and sugar beets), as well as the corresponding Federal Register (FR) language. The methodology used to produce the estimates is outlined below, along with the analysis of additional biological information that could impact the assessments. The market leader approach is only used with peanuts; other approaches are used with soybeans and sugar beets. The registrant Isa Gro input and expert opinions are used for soybeans, and the sugar beet regional value is adjusted for a national one. We have examined all the relevant data and conclude that it is unlikely that the actual percent crop treated (PCT) values for tetraconazole on peanuts, soybeans and sugar beets in the next five years will exceed the PPCTs provided for tetraconazole on these three crops. Numbers to be used in risk analysis are shown in table 1.

Сгор	Chronic	Acute
Peanuts	77	88
Soybeans	27	38
Sugar Beets	70	70

Table 1. Values to be used in Risk Assessment

II. FR LANGUAGE

EPA estimates projected percent crop treated (PPCT) for a new pesticide use by assuming that the percent crop treated (PCT) during the pesticide's initial five years of use on a specific use site will not exceed the average PCT of the market leader (i.e., the one with the greatest PCT) on that site.

Typically, EPA uses USDA/NASS as the primary source for PCT data. When a specific use site is not surveyed by USDA/NASS, EPA uses other sources including proprietary data and calculates the PCT. Comparisons are only made among pesticides of the same pesticide types (i.e., the leading fungicide on the use site is selected for comparison with the new fungicide). The PCTs included in the average may be for the same pesticide, or for different pesticides, since the same, or different pesticides, may dominate for each year selected. This PPCT, based on the average PCT of the market leader, is appropriate for use in chronic dietary risk assessment. The method of estimating a PPCT for a new use of a registered pesticide or a new pesticide produces a high-end estimate that is unlikely, in most cases, to be exceeded during the initial five years of actual use.

The predominant factors that bear on whether the estimated PPCT could be exceeded are whether new pesticide use or new pesticide is more efficacious or controls a broader spectrum of pests than the dominant pesticide; and/or whether there are concerns with pest pressures as indicated in emergency exemption requests or other readily available information; and/or other factor based on analysis of additional information, such as the total crop acreage and the geographical distribution of the crops and pests.

All information currently available for the predominant factors mentioned above or relevant to the case in question have been considered for this chemical, and it is the opinion of BEAD that it is unlikely that actual PCT for tetraconazole will exceed the PPCT during the next five years.

III. PROJECTIONS BASED ON MARKET LEADER APPROACH

The PPCTs for peanuts are calculated by averaging the PCTs of the leading fungicide(s) for the three most recent available years. The PPCT for sugar beets showed a 55 percent use of tetraconazole as the market leader for the year 2000, but 2000 USDA/NASS data for the market leader tetraconazole is registered on sugar beets in seven states (Colorado, Michigan, Minnesota, Montana, Nebraska, North Dakota, and Wyoming). NASS data are adjusted to get the acres treated in each of the seven states, summing them up, then dividing by the sum of the planted acres in these same states, and multiplying by 100 to get, on average, market leader for sugar beets to be used in chronic dietary risk assessment and acute risk too.

The PPCTs for soybeans were based on a modified approach which is described in the following subsection (Modified PPCT Approach for Soybeans).

Сгор	Market Leaders ⁱ	Average ⁱⁱ	Maximum ⁱⁱⁱ	Years
		Market Leader	Market Leader	
Peanuts	Chlorothalonil	77	88	1991, 1999, 2004
Soybeans	Unknown, but projected to be a triazole and/or strobilurin fungicide	27	38	Future projection for next 5 years
Sugar Beets	Tetraconazole	70	70	Adjusted for year 2000

Table 2. Projected Tetraconazole PCT Values for Dietary Risk Assessments

Sources: Based on 1991 to 2004 NASS usage data for peanuts and sugar beets. Crop

Specialists' usage projections were used for soybeans.

¹ Market leaders could be the same chemical for all three years or could be different for each year.

^b Averaging the available years.

^c The highest observed percent crop treated of the available survey years.

IV. Modified PPCT Approach for Soybeans

Due to the recent discovery of a new and important disease on soybeans, Asian soybean rust, historical information was not considered useful for estimating a useful PCT for a fungicide market leader on soybeans. Another approach was utilized which involved obtaining PCT estimates for future market leaders from soybean crop specialists. The estimates were obtained via a phone call and four list server responses enlisted by USDA. The five crop specialists' PCT estimates for a market leader ranged from 10 to 38 percent. For a conservative estimate we utilized only the maximum projected values provided by each respondent, which ranged from 15 to 38 percent. These values translated into average and maximum PPCT values of 27 and 38 percent, respectively.

The most common factors used by the crop specialists to project the market leader PCT were: weather patterns; prevailing winds; length of time crop is in a growth stage that will lead to yield losses, if infection occurs during this period; cost-effectiveness of treatments; and market supply/availability limitations. Some of the specific examples provided to support their estimates were:

- a) About 21% of the total soybean acreage is in areas where the prevailing winds and temperature and humidity are generally unfavorable for soybean rust infection (e.g., KS, ND, NE, SD).
- b) About 16% of the total soybean acreage doesn't have the yield potential to justify the cost of a soybean rust fungicide treatment.
- c) In most years 40% of the soybean acreage is considered to possess a high risk for soybean rust infection (e.g., IL, IN, OH, AR, eastern MO).
- d) Pesticide distributors are more likely to carry stock of those soybean rust fungicides that have other labeled uses relevant to area growers (e.g., wheat and corn uses in Midwestern states). Note: The only alternate crop uses for tetraconazole are sugar beets and peanuts, which are not prevalent crops in most soybean production areas.

V. **ADDITIONAL FACTORS**

Table 3. Biological Analysis of BEAD's Projected Percent Crop Treated (PPCT) for Tetraconazole on Three

	~
Norr	('ro
INCW	UIU

NEW USES	RECENT	New Crops JUSTIFICATION/COMMENTS	WILL
	MARKET	JUSTIFICATION/COMMENTS	TETRACONAZOLE
[AVG.	LEADER(S)		EXCEED THE PCT
/MAX.	[SAMPLE		LEVELS OF MARKET
PPCT]	YEARS]		LEADER(S)?
Sugar Beets –	tetraconazole	Tetraconazole is the current market leader (55%),	No
cercospora	[2000]	and was previously only registered for use in 7	
leaf spot,		sugar beet producing states (CO, MI, MN, MT,	
powdery		NE, ND, WY); based on the 2006 acreage planted,	
mildew		the addition of 4 states (CA, ID, OR, WA)	
[70/70]		increases the potential acreage to be treated by	
		about 18 percent; if all the planted acreage in	
		these 4 additional states are treated it could bring	
		the PPCT up to about 77%; based upon the pest	
		information provided in the USDA Crop Profiles it	
		is not likely that more than 70% of the planted	
		acreage will be treated in any of the 4 additional	
		states, because the reported total fungicide usage	
0 1	NT / 1° 11	for these target pests is less than 70%	
Soybeans –	Not applicable	These values seem to be reasonable estimates for the f there exists the $f(x) = h(x) + h(x) $	No, plus the likelihood of
Asian		the future market leader(s) when the following factors are considered:	an epidemic although
soybean rust,		factors are considered.	uncertain is thought to be
cercospora, frog eye,		1] at least 11 active ingredients are currently	low
white mold,		available and competing for the Asian soybean rust	
powdery		control market on the approximately 75 million	
mildew,		acres grown;	
septoria,			
anthracnose		2] treatments are only warranted when weather	
[27/38]		conditions conducive to disease development occur	
		during the soybean bloom and/or pod fill stages;	
		3] in any given year the probability of a national	
		epidemic which results in the need for most of the	
		US acreage grown in the 31 soybean producing	
		states being treated is low, because it would be	
		dependent upon the widespread occurrence of	
		unusual weather patterns during the critical crop	
		growth stages;	
		4] The proposed labeling allows for up to two	
		applications per year, which if it occurs will reduce	
		stocks and therefore reduce the total acreage	
		capable of being treated; Some of the crop	
		specialists projected that up to 30 - 40% of the	
		acreage in their state may be treated twice.	
		5] the registrant stated that only one tetraconazole	
		product will be marketed for the soybean use	
		because the chemical is still under patent, which	

NEW USES	RECENT	JUSTIFICATION/COMMENTS	WILL
LANC	MARKET		TETRACONAZOLE
	. ,		
[AVG. /MAX. PPCT]	MARKET LEADER(S) [SAMPLE YEARS]	 would appear to limit the amount likely to be available throughout the US due to supply limitations and surplus stock concerns if an epidemic does not occur; 6] The registrant (Isa Gro), per a personal phone call on November 16, 2006, stated that although they projected they might be able to treat as much as 5.38% of the crop if an epidemic occurred; they felt it would be impossible to supply enough tetraconazole to treat 10% of the crop anytime within the next 5 years. 7] Since the disease organism is not considered cold-hardy, each growing season the disease must start its northward movement from Mexico and/or extreme southern United States locations. Accordingly, the northward disease spread each year and the specific states impacted is dependent upon wind speed and direction during humid and moderate temperature weather. 8] EPA has approved a wide range of active ingredients and products that can be available to growers. This effort was initiated because of national concern that the supply of fungicides would not be adequate in the case of a soybean rust epidemic. This involved granting numerous states permission to use seven active ingredients via Section 18 quarantine emergency exemptions, in addition to the four active ingredients already available via Section 3 registrations. 9] Based on yields obtained in recent soybean rust efficacy studies conducted in the US and other countries the triazole and strobilurin fungicide classes generally seem to be the most efficacious groups of fungicides to use (Fungicid & Nematicide Tests – Special Section on Asian 	TETRACONAZOLE EXCEED THE PCT LEVELS OF MARKET LEADER(S)?
		Soybean Rust Reports; <u>http://www.apsnet.org/online/FNtests/</u>). Most crop specialists predict combinations of these two types of fungicides will be used by many growers.	
		10] Since the competing fungicide tebuconazole is reportedly among the least expensive fungicides, as well as one of the most effective triazole fungicides, it is generally considered by crop specialists to be the triazole fungicide of choice.	

NEW USES [AVG. /MAX. PPCT]	RECENT MARKET LEADER(S) [SAMPLE YEARS]	JUSTIFICATION/COMMENTS	WILL TETRACONAZOLE EXCEED THE PCT LEVELS OF MARKET LEADER(S)?
		Since there are multiple products (alone and in combinations with other fungicides) being sold by different companies reasonable stocks are expected to be available in most soybean production areas. 11] Crop specialists projected that the maximum US soybean acreage to be treated with a fungicide, if an epidemic occurred, would range from 35-65 percent (average = 54%). Therefore if one of the eleven active ingredients available were able to attain a 50% market share this would only result in a maximum of 32.5% of the crop being treated with any one fungicide. BEAD contends that this level of market share is rarely achieved when a number of competitive active ingredients are available.	
Peanuts – early leaf spot, late leaf spot, web blotch, rust [77/88]	chlorothalonil [1991, 1999, 2004]	The market leader chlorothalonil is typically inexpensive and is used mainly for control of the same pests that are claimed on the proposed tetraconazole label plus the common and important disease white mold (southern stem rot); chlorothalonil is alternated with various systemic fungicides to delay the development of resistant pest strains; the introduction of the systemic fungicide tetraconazole will not likely affect chlorothalonil's current usage, but it is expected to share the existing systemic fungicide market	No

VI. CONCLUSIONS/RECOMMENDATIONS

BEAD recommends that the given average PPCTs be used in the chronic dietary risk assessment for tetraconazole, and the maximum PPCTs for acute risk assessment. BEAD has considered all relevant information and believes it is unlikely that the above PPCTs will be exceeded during the next five years for peanuts, soybeans, and sugar beets.

VII. References:

Typically, EPA uses USDA/NASS as the source for raw PCT data because it is publicly available and does not have to be calculated from available data sources. When a specific use site is not surveyed by USDA/NASS, EPA uses proprietary data and calculates the estimated PCT.

Agricultural Chemical Usage, 1990 Field Crops Summary, May 1991 Agricultural Chemical Usage, 1998 Field Crops Summary, May 1999 Agricultural Chemical Usage, 1999 Field Crops Summary, May 2000 Agricultural Chemical Usage, 2004 Field Crops Summary, May 2005 USDA, 1999, Crop Profile for Sugar Beet in California. <u>http://www.ipmcenters.org/cropprofiles/docs/casugarbeets.html</u> USDA, 2000. Crop Profile for Sugar Beet in Idaho. <u>http://www.ipmcenters.org/cropprofiles/docs/IDsugarbeets.html</u> USDA, 1999, Crop Profile for Sugar Beet in Oregon. <u>http://www.ipmcenters.org/cropprofiles/docs/orsugarbeets.html</u> USDA, 2001, Crop Profile for Sugar Beet in Washington. http://www.ipmcenters.org/cropprofiles/docs/WAsugarbeets.html

Attachment 2: DEEM-FCIDTM acute exposure estimates (all commodities)

U.S. Environmental Protection Agency Ver. 2.02 DEEM-FCID ACUTE Analysis for TETRACONAZOLE (1994-98 data) Residue file: 120603a.R98 Adjustment factor #2 NOT used. Analysis Date: 12-07-2006/12:55:44 Residue file dated: 12-07-2006/12:54:51/8 Daily totals for food and foodform consumption used. Run Comment: "acute for females 13-50 only FQPA SF = 1x (acute and chronic)"

Summary calculations (per capita):

	95th Perc		99th Percentile		99.9th Percentil	
	Exposure	% aRfD	Exposure	% aRfD	Exposure	% aRfD
Females 13+ (preg/	'not nursing	· · · · · · · · · · · · · · · · · · ·				
	0.006467	2.87	0.007195	3.20	0.009582	4.26
Females 13+ (nursi	.ng):					
	0.007715	3.43	0.011025	4.90	0.013018	5.79
Females 13-19 (not	preg or nu	rsing):				
	0.005535	2.46	0.008239	3.66	0.013633	6.06
Females 20+ (not p	reg or nurs	ing):				
	0.006025	2.68	0.009208	4.09	0.016783	7.46
Females 13-50 yrs:						
	0.006169	2.74	0.009939	4.42	0.016864	7.50
Females 13-49 yrs:						
	0.006168	2.74	0.010060	4.47	0.016826	7.48

Attachment 3: DEEM-FCIDTM acute exposure estimates (all commodities excluding turf)

U.S. Environmental Protection Agency Ver. 2.02 DEEM-FCID ACUTE Analysis for TETRACONAZOLE (1994-98 data) Residue file: 120603a all commodities excluding turf.R98 Adjustment factor #2 NOT used. Analysis Date: 01-08-2007/14:43:01 Residue file dated: 01-08-2007/14:36:36/8 Daily totals for food and foodform consumption used. Run Comment: "acute for females 13-50 only FQPA SF = 1x (acute and chronic)"

Summary calculations (per capita):

	95th Perc Exposure		99th Perc Exposure		99.9th Per Exposure	centile % aRfD
Females 13+ (preg/	'not nursing):				
	0.002093	0.93	0.002353	1.05	0.002403	1.07
Females 13+ (nursi	_ng):					
	0.002123	0.94	0.002901	1.29	0.002978	1.32
Females 13-19 (not	preg or nu	rsing):				
	0.001517	0.67	0.001959	0.87	0.002788	1.24
Females 20+ (not p	oreg or nurs	ing):				
	0.001483	0.66	0.002108	0.94	0.003257	1.45
Females 13-50 yrs:						
	0.001599	0.71	0.002223	0.99	0.003279	1.46
Females 13-49 yrs:						
	0.001603	0.71	0.002228	0.99	0.003275	1.46

Attachment 4: DEEM-FCIDTM acute residue file

Chemical: tet RfD(Chronic): RfD(Acute): . Date created/ Comment: acut	Documents and Settings\tbloem\tet raconazole .0073 mg/kg bw/day NOEL(Chronic 225 mg/kg bw/day NOEL(Acute): 0 last modified: 12-07-2006/12:20:4 e for females 13-50 only FQPA SF): 0 mg/kg bw mg/kg bw/day 9/8 = 1x (acute a	w/day y Q*= .0 Program and chro	23 ver. 2.03 mic)
EPA Crop Comment		Def Res		
Code Grp	Commodity Name	(ppm)	#1 	#2
- 95002630 O	Peanut	0.038000	1.000	1.000
95002640 O	Peanut, butter	0.038000		
95002650 O	Peanut, oil	0.126000		
86010000 O	Water, direct, all sources	0.118000	1.000	
86020000 O	Water, indirect, all sources		1.000	
21000440 M	Beef, meat	0.010000	1.000	
21000441 M	Beef, meat-babyfood	0.010000	1.000	
21000450 M	Beef, meat, dried	0.010000	1.920	1.000
21000460 M	Beef, meat byproducts	0.010000	1.000	
21000461 M	Beef, meat byproducts-babyfood	0.010000	1.000	1.000
21000470 M	Beef, fat	0.020000	1.000	1.000
21000471 M	Beef,fat-babyfood	0.020000	1.000	1.000
21000480 M	Beef, kidney	0.010000	1.000	1.000
21000490 M	Beef, liver	0.203000	1.000	
21000491 M	Beef, liver-babyfood	0.203000	1.000	1.000
23001690 M	Goat, meat	0.010000	1.000	1.000
23001700 M	Goat, meat byproducts	0.010000	1.000	1.000
23001710 M	Goat, fat	0.020000	1.000	1.000
23001720 M	Goat, kidney	0.010000	1.000	1.000
23001730 M	Goat, liver	0.203000	1.000	1.000
24001890 M	Horse, meat	0.010000	1.000	1.000
28002210 M	Meat, game	0.010000	1.000	1.000
25002900 M	Pork, meat	0.010000	1.000	1.000
25002901 M	Pork, meat-babyfood	0.010000	1.000	1.000
25002910 M	Pork, skin	0.010000	1.000	1.000
25002920 M	Pork, meat byproducts	0.010000	1.000	1.000
25002921 M	Pork, meat byproducts-babyfood	0.010000	1.000	1.000
25002930 M	Pork, fat	0.010000	1.000	1.000
25002931 M	Pork, fat-babyfood	0.010000	1.000	1.000
25002940 M	Pork, kidney	0.010000	1.000	1.000
25002950 M	Pork, liver	0.050000	1.000	1.000
29003120 M	Rabbit, meat	0.010000	1.000	1.000
26003390 M	Sheep, meat	0.010000	1.000	1.000
26003391 M	Sheep, meat-babyfood	0.010000	1.000	1.000
26003400 M	Sheep, meat byproducts	0.010000	1.000	1.000
26003410 M	Sheep, fat	0.020000	1.000	1.000
26003411 M	Sheep, fat-babyfood	0.020000	1.000	1.000
26003420 M	Sheep, kidney	0.010000	1.000	1.000
26003430 M	Sheep, liver	0.203000	1.000	1.000
40000930 P	Chicken, meat	0.010000	1.000	1.000
40000931 P	Chicken, meat-babyfood	0.010000	1.000	1.000
40000940 P	Chicken, liver	0.010800	1.000	1.000
40000950 P	Chicken, meat byproducts	0.010000	1.000	1.000
40000951 P	Chicken, meat byproducts-babyfoo	0.010000	1.000	1.000

40000960 P	Chicken, fat	0.050000	1.000	1.000
40000961 P	Chicken, fat-babyfood	0.050000	1.000	1.000
40000970 P	Chicken, skin	0.018700	1.000	1.000
40000971 P	Chicken, skin-babyfood	0.018700	1.000	1.000
70001450 P	Egg, whole	0.020000	1.000	1.000
70001451 P	Egg, whole-babyfood	0.020000	1.000	1.000
70001460 P	Egg, white	0.020000	1.000	1.000
70001461 P	Egg, white (solids)-babyfood	0.020000	1.000	1.000
70001470 P	Egg, yolk	0.020000	1.000	1.000
70001471 P	Egg, yolk-babyfood	0.020000	1.000	1.000
60003010 P	Poultry, other, meat	0.010000	1.000	1.000
60003020 P	Poultry, other, liver	0.010800	1.000	1.000
60003030 P	Poultry, other, meat byproducts	0.010000	1.000	1.000
60003040 P	Poultry, other, fat	0.050000	1.000	1.000
60003050 P	Poultry, other, skin	0.018700	1.000	1.000
50003820 P	Turkey, meat	0.010000	1.000	1.000
50003821 P	Turkey, meat-babyfood	0.010000	1.000	1.000
50003830 P	Turkey, liver	0.010800	1.000	1.000
50003831 P	Turkey, liver-babyfood	0.010800	1.000	1.000
50003840 P	Turkey, meat byproducts	0.010000	1.000	1.000
50003841 P	Turkey, meat byproducts-babyfood	0.010000	1.000	1.000
50003850 P	Turkey, fat	0.050000	1.000	1.000
50003851 P	Turkey, fat-babyfood	0.050000	1.000	1.000
50003860 P	Turkey, skin	0.018700	1.000	1.000
50003861 P	Turkey, skin-babyfood	0.018700	1.000	1.000
27002220 D	Milk, fat	0.250000	1.000	1.000
27002221 D	Milk, fat - baby food/infant for	0.250000	1.000	1.000
27012230 D	Milk, nonfat solids	0.010000	1.000	1.000
27012231 D	Milk, nonfat solids-baby food/in	0.010000	1.000	1.000
27022240 D	Milk, water	0.010000	1.000	1.000
27022241 D	Milk, water-babyfood/infant form	0.010000	1.000	1.000
27032251 D	Milk, sugar (lactose)-baby food/	0.010000	1.000	1.000
01010520 1A	Beet, sugar	0.063000	1.000	1.000
01010521 1A	Beet, sugar-babyfood	0.063000	1.000	1.000
01010530 1A	Beet, sugar, molasses	0.189000	1.000	1.000
01010531 1A	Beet, sugar, molasses-babyfood	0.189000	1.000	1.000
06003470 6	Soybean, seed	0.150000	1.000	1.000
06003480 6	Soybean, flour	0.150000	1.000	1.000
06003481 6	Soybean, flour-babyfood	0.150000	1.000	1.000
06003490 6	Soybean, soy milk	0.150000	1.000	1.000
06003491 6	Soybean, soy milk-babyfood or in	0.150000	1.000	1.000
06003500 6	Soybean, oil	0.800000	1.000	1.000
06003501 6	Soybean, oil-babyfood	0.800000	1.000	1.000
14002690 14	Pecan	0.050000	1.000	1.000

Attachment 5: DEEM-FCIDTM chronic exposure estimates (all commodities)

U.S. Environmental Protection Agency Ver. 2.00 (1994-98 data) DEEM-FCID Chronic analysis for TETRACONAZOLE Residue file name: C:\Documents and Settings\tbloem\tetraconazole\120603c.R98 Adjustment factor #2 used. Analysis Date 12-11-2006/12:39:33 Residue file dated: 12-11-2006/12:32:37/8 Reference dose (RfD, Chronic) = .0073 mg/kg bw/day COMMENT 1: acute for females 13-50 only FQPA SF = 1x (acute and chronic) _____ Total exposure by population subgroup _____ Total Exposure -----Population mg/kg Percent of body wt/day Rfd Subgroup - ----U.S. Population (total) 0.001724 23.6% U.S. Population (spring season) 0.001711 23.4% 0.001842 0.001670 0.001672 U.S. Population (summer season) 25.2% U.S. Population (autumn season) 22.9% U.S. Population (winter season) 22.9% Northeast region 0.001575 21.6% Midwest region 0.001748 23.9% 22.5% Southern region 0.001643 Western region 0.001962 26.9% Hispanics 0.001946 26.7% Non-hispanic whites 0.001683 23.1% Non-hispanic blacks 0.001649 22.6% Non-hisp/non-white/non-black 0.002095 28.7% All infants (< 1 year) 0.005564 76.2% Nursing infants 0.002054 28.1% Non-nursing infants 0.006896 94.5% Children 1-6 yrs 34.0% 0.002485 Children 7-12 yrs 22.3% 0.001628 0.001232 0.001690 Females 13-19 (not preg or nursing) Females 20+ (not preg or nursing) 16.9% 23.1% Females 13-50 yrs 0.001653 22.6% Females 13+ (preg/not nursing) 0.001672 22.9% Females 13+ (nursing) 0.002340 32.1% Males 13-19 yrs 0.001310 17.9% Males 20+ yrs 0.001537 21.0% Seniors 55+ 0.001658 22.7% Children 1-2 yrs 0.002629 36.0% Children 3-5 yrs 0.002480 34.0% Children 6-12 yrs 0.001717 23.5% Youth 13-19 yrs 0.001276 17.5% 0.001597 Adults 20-49 yrs 21.9% Adults 50+ yrs 0.001660 22.7% 0.001587 Females 13-49 yrs 21.7% -

Attachment 6: DEEM-FCIDTM chronic exposure estimates (all commodities excluding turf)

U.S. Environmental Protection Agency Ver. 2.00 DEEM-FCID Chronic analysis for TETRACONAZOLE (1994-98 data) Residue file name: C:\Documents and Settings\tbloem\tetraconazole\120603c all commodities excluding turf.R98 Adjustment factor #2 used. Analysis Date 01-08-2007/14:44:43 Residue file dated: 01-08-2007/14:37:28/8 Reference dose (RfD, Chronic) = .0073 mg/kg bw/day COMMENT 1: acute for females 13-50 only FQPA SF = 1x (acute and chronic) Total exposure by population subgroup					
Total Exposure					
Population Subgroup	mg/kg body wt/day				
U.S. Population (total)	0.000252	3.4%			
U.S. Population (spring season)	0.000251	3.4%			
U.S. Population (summer season)	0.000260	3.6%			
U.S. Population (autumn season)	0.000246	3.4%			
U.S. Population (winter season)	0.000249	3.4%			
Northeast region	0.000232	3.2%			
Midwest region	0.000259	3.5%			
Southern region	0.000243	3.3%			
Western region	0.000274	3.8%			
Hispanics	0.000274	3.8%			
Non-hispanic whites	0.000246	3.4%			
Non-hispanic blacks	0.000251	3.4%			
Non-hisp/non-white/non-black	0.000289	4.0%			
All infants (< 1 year)	0.000735	10.1%			
Nursing infants	0.000263	3.6%			
Non-nursing infants	0.000915	12.5%			
Children 1-6 yrs	0.000427	5.9%			
Children 7-12 yrs	0.000290	4.0%			
Females 13-19 (not preg or nursing)	0.000196	2.7%			
Females 20+ (not preg or nursing)	0.000220	3.0%			
Females 13-50 yrs	0.000228	3.1%			
Females 13+ (preg/not nursing)	0.000240	3.3%			
Females 13+ (nursing)	0.000300	4.1%			
Males 13-19 yrs	0.000226	3.1%			
Males 20+ yrs	0.000217	3.0%			
Seniors 55+	0.000212	2.9%			
Children 1-2 yrs	0.000442	6.0%			
Children 3-5 yrs	0.000432	5.9%			
Children 6-12 yrs	0.000305	4.2%			
Youth 13-19 yrs	0.000212	2.9%			
Adults 20-49 yrs	0.000222	3.0%			
Adults 50+ yrs	0.000213	2.9%			

 Females 13-49 yrs
 0.000218
 3.0%

Attachment 7: DEEM-FCIDTM chronic residue file

Chemical: tet RfD(Chronic): RfD(Acute): . Date created/ Comment: acut	Documents and Settings\tbloem\tetr raconazole .0073 mg/kg bw/day NOEL(Chronic) 225 mg/kg bw/day NOEL(Acute): 0 last modified: 12-11-2006/12:32:37 e for females 13-50 only FQPA SF =	: 0 mg/kg bv mg/kg bw/day 7/8 = 1x (acute a	v/day / Q*= .0 Program and chro	23 ver. 2.03 nic)
EPA Crop Comment		Def Res	Adj.Fa	
	Commodity Name	(ppm)	#1	#2
	Commodity Name	(F.F)		
-				
95002630 O	Peanut	0.016000	1.000	1.000
95002640 O	Peanut, butter	0.016000	1.890	1.000
95002650 O	Peanut, oil	0.055000	1.000	1.000
86010000 O	Water, direct, all sources	0.077130	1.000	1.000
86020000 O	Water, indirect, all sources	0.077130	1.000	1.000
21000440 M		0.000114	1.000	1.000
21000441 M	Beef, meat Beef, meat-babyfood Beef meat dried	0.000114	1.000	1.000
21000450 M	Beef, meat, dried	0.000114	1.920	1.000
21000460 M	Beef, meat byproducts	0.000596	1.000	1.000
21000461 M	Beef, meat byproducts-babyfood	0.000596	1.000	1.000
21000470 M	Beef, fat	0.001240	1.000	1.000
21000471 M	Beef,fat-babyfood	0.001240	1.000	1.000
21000480 M	Beef, kidney	0.000596	1.000	1.000
21000490 M	Beef, liver	0.019730	1.000	1.000
21000491 M	Beef, liver-babyfood	0.019730	1.000	1.000
23001690 M	Goat, meat	0.000114		1.000
23001700 M	Goat, meat byproducts	0.000596		1.000
23001710 M	Goat, fat	0.001240	1.000	1.000
23001720 M	Goat, kidney	0.000596	1.000	1.000
23001730 M	Goat, liver	0.019730	1.000	1.000
24001890 M	Horse, meat	0.000114	1.000	1.000
28002210 M	Meat, game	0.000114	1.000	1.000
25002900 M	Pork, meat	0.000014	1.000	1.000
25002901 M	Pork, meat-babyfood			1.000
25002910 M	Pork, skin	0.000149	1.000	1.000
25002920 M	Pork, meat byproducts	0.000072		1.000
25002921 M	Pork, meat byproducts-babyfood	0.000072		1.000
25002930 M	Pork, fat	0.000149		1.000
25002931 M	Pork, fat-babyfood	0.000149	1.000	1.000
25002940 M	Pork, kidney	0.000072		
25002950 M	Pork, liver	0.002370	1.000	1.000
29003120 M	Rabbit, meat	0.000114	1.000	1.000
26003390 M	Sheep, meat	0.000114	1.000	1.000
26003391 M	Sheep, meat-babyfood	0.000114	1.000	1.000
26003400 M	Sheep, meat byproducts	0.000596	1.000	1.000
26003410 M	Sheep, fat	0.001240	1.000	1.000
26003411 M	Sheep, fat-babyfood	0.001240	1.000	1.000
26003420 M	Sheep, kidney	0.000596	1.000	1.000
26003430 M	Sheep, liver	0.019730	1.000	1.000
40000930 P	Chicken, meat habufaad	0.000176	1.000	1.000
40000931 P	Chicken, meat-babyfood	0.000176	1.000	1.000
40000940 P	Chicken, liver	0.000870	1.000	1.000
40000950 P	Chicken, meat byproducts	0.000336	1.000	1.000

40000951 P	Chicken, meat byproducts-babyfoo	0.000336	1.000	1.000
40000960 P	Chicken, fat	0.003304	1.000	1.000
40000961 P	Chicken, fat-babyfood	0.003304	1.000	1.000
40000970 P	Chicken, skin	0.001378	1.000	1.000
40000971 P	Chicken, skin-babyfood	0.001378	1.000	1.000
70001450 P	Egg, whole	0.000748	1.000	1.000
70001451 P	Egg, whole-babyfood	0.000748	1.000	1.000
70001460 P	Egg, white	0.000748	1.000	1.000
70001461 P	Egg, white (solids)-babyfood	0.000748	1.000	1.000
70001470 P	Egg, yolk	0.000748	1.000	1.000
70001471 P	Egg, yolk-babyfood	0.000748	1.000	1.000
60003010 P	Poultry, other, meat	0.000176	1.000	1.000
60003020 P	Poultry, other, liver	0.000870	1.000	1.000
60003030 P	Poultry, other, meat byproducts	0.000336	1.000	1.000
60003040 P	Poultry, other, fat	0.003304	1.000	1.000
60003050 P	Poultry, other, skin	0.001378	1.000	1.000
50003820 P	Turkey, meat	0.000176	1.000	1.000
50003821 P	Turkey, meat-babyfood	0.000176	1.000	1.000
50003830 P	Turkey, liver	0.000870	1.000	1.000
50003831 P	Turkey, liver-babyfood	0.000870	1.000	1.000
50003840 P	Turkey, meat byproducts	0.000336	1.000	1.000
50003841 P	Turkey, meat byproducts-babyfood	0.000336	1.000	1.000
50003850 P	Turkey, fat	0.003304	1.000	1.000
50003851 P	Turkey, fat-babyfood	0.003304	1.000	1.000
50003860 P	Turkey, skin	0.001378	1.000	1.000
50003861 P	Turkey, skin-babyfood	0.001378	1.000	1.000
27002220 D	Milk, fat	0.002825	1.000	1.000
27002221 D	Milk, fat - baby food/infant for	0.002825	1.000	1.000
27012230 D	Milk, nonfat solids	0.000113	1.000	1.000
27012231 D	Milk, nonfat solids-baby food/in	0.000113	1.000	1.000
27022240 D	Milk, water	0.000113	1.000	1.000
27022241 D	Milk, water-babyfood/infant form	0.000113	1.000	1.000
27032251 D	Milk, sugar (lactose)-baby food/	0.000113	1.000	1.000
01010520 1A	Beet, sugar	0.002500	1.000	1.000
01010521 1A	Beet, sugar-babyfood	0.002500	1.000	1.000
01010530 1A	Beet, sugar, molasses	0.071000	1.000	1.000
01010531 1A	Beet, sugar, molasses-babyfood	0.071000	1.000	1.000
06003470 6	Soybean, seed	0.046000	1.000	1.000
06003480 6	Soybean, flour	0.046000	1.000	1.000
06003481 6	Soybean, flour-babyfood	0.046000	1.000	1.000
06003490 6	Soybean, soy milk	0.046000	1.000	1.000
06003491 6	Soybean, soy milk-babyfood or in	0.046000	1.000	1.000
06003500 6	Soybean, oil	0.212000	1.000	1.000
06003501 6	Soybean, oil-babyfood	0.212000	1.000	1.000
14002690 14	Pecan	0.009000	1.000	1.000

Attachment 8: DEEM-FCIDTM cancer exposure estimates (all commodities excluding turf)

U.S. Environmental Protection Agency Ver. 2.00 DEEM-FCID Chronic analysis for TETRACONAZOLE (1994-98 data) Residue file name: C:\Documents and Settings\tbloem\tetraconazole\120603cancer without turf.R98 Adjustment factor #2 used. Analysis Date 12-12-2006/15:06:28 Residue file dated: 12-12-2006/15:04:57/8 Q* = 0.023 COMMENT 1: acute for females 13-50 only FQPA SF = 1x (acute and chronic) Total exposure by population subgroup

	Total Exposure				
Population Subgroup	mg/kg body wt/day	Lifetime risk (Q*= .023)			
U.S. Population (total)	0.000134	3.09E-06			

Attachment 9: DEEM-FCIDTM cancer residue file (all commodities excluding turf)

Filename: C:\Documents and Settings\tbloem\tetraconazole\120603cancer without turf.R98 Chemical: tetraconazole RfD(Chronic): .0073 mg/kg bw/day NOEL(Chronic): 0 mg/kg bw/day RfD(Acute): .225 mg/kg bw/day NOEL(Acute): 0 mg/kg bw/day Q*= .023 Date created/last modified: 12-12-2006/14:06:38/8 Program ver. 2.03 Comment: acute for females 13-50 only FQPA SF = 1x (acute and chronic) _____ Def Res Adj.Factors EPA Crop Comment
 Code
 Grp
 Commodity Name
 (ppm)
 #1
 #2
 _ _ _ _ _ _ 95002630 O Peanut 0.016000 1.000 0.770 95002640 O Peanut, butter 0.016000 1.890 0.770

 95002650 0
 Peanut, oil
 0.055000
 1.000
 0.005

 86010000 0
 Water, direct, all sources
 0.004970
 1.000
 1.000

 86020000 0
 Water, indirect, all sources
 0.004970
 1.000
 1.000

 86020000 0
 Water, indirect, all sources
 0.004970
 1.000
 1.000

 86020000 0
 Water, indirect, all sources
 0.000114
 1.000
 1.000

 21000440 M
 Beef, meat

 21000441 M
 Beef, meat-babyfood
 0.000114
 1.000
 1.000

 21000450 M
 Beef, meat, dried
 0.000114
 1.920
 1.000

 21000460 M
 Beef, meat byproducts
 0.000596
 1.000
 1.000

 21000461 M
 Beef, meat byproducts-babyfood
 0.001240
 1.000
 1.000

 21000461 M
 Beef, fat
 0.001240
 1.000
 1.000
 21000471 M Beef, fat-babyfood 21000480 M Beef, kidney 0.001240 1.000 1.000 0.000596 1.000 1.000 21000490 M Beef, liver 0.019730 1.000 1.000 21000491 M Beef, liver-babyfood 0.019730 1.000 1.000 23001690 M Goat, meat 0.000114 1.000 1.000 23001690 M Goat, meat 23001700 M Goat, meat byproducts 23001710 M Goat, fat 23001720 M Goat, kidney 23001730 M Goat, liver 24001890 M Horse, meat 28002210 M Meat, game 25002900 M Pork, meat 25002901 M Pork, meat-babyfood 25002910 M Pork, skin 0.000596 1.000 1.000 0.001240 1.000 1.000 0.000596 1.000 1.000 0.019730 1.000 1.000 0.000114 1.000 1.000

 28002210 M
 Meat, game
 0.000114
 1.000
 1.000

 25002900 M
 Pork, meat
 0.000114
 1.000
 1.000

 25002901 M
 Pork, meat-babyfood
 0.000014
 1.000
 1.000

 25002910 M
 Pork, meat-babyfood
 0.00014
 1.000
 1.000

 25002920 M
 Pork, skin
 0.000149
 1.000
 1.000

 25002920 M
 Pork, meat byproducts
 0.000072
 1.000
 1.000

 25002921 M
 Pork, meat byproducts-babyfood
 0.000072
 1.000
 1.000

 25002930 M
 Pork, fat
 0.000149
 1.000
 1.000

 25002931 M
 Pork, fat
 0.000149
 1.000
 1.000

 25002930 M Pork, fat 25002931 M Pork, fat-babyfood 0.000149 1.000 1.000 25002940 M Pork, kidney 0.000072 1.000 1.000 25002950 M Pork, liver 0.002370 1.000 1.000 29003120 M Rabbit, meat 0.000114 1.000 1.000 0.000114 1.000 1.000 26003390 M Sheep, meat 26003391 M Sheep, meat-babyfood 26003400 M Sheep, meat byproducts 0.000114 1.000 1.000 0.000596 1.000 1.000 26003410 M Sheep, fat 0.001240 1.000 1.000 26003411 M Sheep, fat-babyfood 0.001240 1.000 1.000 26003420 M Sheep, kidney 0.000596 1.000 1.000 26003430 M Sheep, liver 0.019730 1.000 1.000 40000930 P Chicken, meat 0.000176 1.000 1.000
 40000931 P
 Chicken, meat-babyfood
 0.000176
 1.000
 1.000

 40000940 P
 Chicken, liver
 0.000870
 1.000
 1.000

 40000950 P
 Chicken, meat byproducts
 0.000336
 1.000
 1.000

40000951 P	Chicken, meat byproducts-babyfoo	0.000336	1.000	1.000
40000960 P	Chicken, fat	0.003304	1.000	1.000
40000961 P	Chicken, fat-babyfood	0.003304	1.000	1.000
40000970 P	Chicken, skin	0.001378	1.000	1.000
40000971 P	Chicken, skin-babyfood	0.001378	1.000	1.000
70001450 P	Egg, whole	0.000748	1.000	1.000
70001451 P	Egg, whole-babyfood	0.000748	1.000	1.000
70001460 P	Egg, white	0.000748	1.000	1.000
70001461 P	Egg, white (solids)-babyfood	0.000748	1.000	1.000
70001470 P	Egg, yolk	0.000748	1.000	1.000
70001471 P	Egg, yolk-babyfood	0.000748	1.000	1.000
60003010 P	Poultry, other, meat	0.000176	1.000	1.000
60003020 P	Poultry, other, liver	0.000870	1.000	1.000
60003030 P	Poultry, other, meat byproducts	0.000336	1.000	1.000
60003040 P	Poultry, other, fat	0.003304	1.000	1.000
60003050 P	Poultry, other, skin	0.001378	1.000	1.000
50003820 P	Turkey, meat	0.000176	1.000	1.000
50003821 P	Turkey, meat-babyfood	0.000176	1.000	1.000
50003830 P	Turkey, liver	0.000870	1.000	1.000
50003831 P	Turkey, liver-babyfood	0.000870	1.000	1.000
50003840 P	Turkey, meat byproducts	0.000336	1.000	1.000
50003841 P	Turkey, meat byproducts-babyfood	0.000336	1.000	1.000
50003850 P	Turkey, fat	0.003304	1.000	1.000
50003851 P	Turkey, fat-babyfood	0.003304	1.000	1.000
50003860 P	Turkey, skin	0.001378	1.000	1.000
50003861 P	Turkey, skin-babyfood	0.001378	1.000	1.000
27002220 D	Milk, fat	0.002825	1.000	1.000
27002221 D	Milk, fat - baby food/infant for	0.002825	1.000	1.000
27012230 D	Milk, nonfat solids	0.000113	1.000	1.000
27012231 D	Milk, nonfat solids-baby food/in	0.000113	1.000	1.000
27022240 D	Milk, water	0.000018	1.000	1.000
27022241 D	Milk, water-babyfood/infant form	0.000018	1.000	1.000
27032251 D	Milk, sugar (lactose)-baby food/	0.000113	1.000	1.000
01010520 1A	Beet, sugar	0.002500	1.000	0.700
01010521 1A	Beet, sugar-babyfood	0.002500	1.000	0.700
01010530 1A	Beet, sugar, molasses	0.071000	1.000	0.700
01010531 1A	Beet, sugar, molasses-babyfood	0.071000	1.000	0.700
06003470 6	Soybean, seed	0.046000	1.000	0.270
06003480 6	Soybean, flour	0.046000	1.000	0.270
06003481 6	Soybean, flour-babyfood	0.046000	1.000	0.270
06003490 6	Soybean, soy milk	0.046000	1.000	0.270
06003491 6	Soybean, soy milk-babyfood or in	0.046000	1.000	0.270
06003500 6	Soybean, oil	0.212000	1.000	0.270
06003501 6	Soybean, oil-babyfood	0.212000	1.000	0.270
14002690 14	Pecan	0.009000	1.000	1.000

Attachment 10: DEEM-FCIDTM cancer exposure estimates (all commodities excluding pecan and turf)

U.S. Environmental Protection Agency Ver. 2.00 DEEM-FCID Chronic analysis for TETRACONAZOLE (1994-98 data) Residue file name: C:\Documents and Settings\tbloem\tetraconazole\120603cancer without pecan and turf.R98 Adjustment factor #2 used. Analysis Date 12-12-2006/15:07:05 Residue file dated: 12-12-2006/15:05:51/8 Q* = 0.023 COMMENT 1: acute for females 13-50 only FQPA SF = 1x (acute and chronic) Total exposure by population subgroup

	Total Exposure				
Population Subgroup	mg/kg body wt/day	Lifetime risk (Q*= .023)			
U.S. Population (total)	0.000109	2.50E-06			

Attachment 11: DEEM-FCIDTM cancer residue file (all commodities excluding pecan and turf)

Filename: C:\Documents and Settings\tbloem\tetraconazole\120603cancer without pecan and turf.R98 Chemical: tetraconazole RfD(Chronic): .0073 mg/kg bw/day NOEL(Chronic): 0 mg/kg bw/day RfD(Acute): .225 mg/kg bw/day NOEL(Acute): 0 mg/kg bw/day Q*= .023 Date created/last modified: 12-11-2006/12:36:02/8 Program ver. 2.03 Comment: acute for females 13-50 only FQPA SF = 1x (acute and chronic) _____ EPA Crop Def Res Adj.Factors Comment (ppm) #1 Code Grp Commodity Name #2 ----- ----- ------_ _ _ _ _ _ 95002630 OPeanut0.0160001.0000.77095002640 OPeanut, butter0.0160001.8900.77095002650 OPeanut, oil0.0550001.0000.77086010000 OWater, direct, all sources0.0037701.0001.00086020000 OWater, indirect, all sources0.0037701.0001.00021000440 MBeef, meat0.0001141.0001.00021000441 MBeef, meat-babyfood0.0001141.0001.00021000450 MBeef, meat, dried0.0001141.9201.00021000460 MBeef, meat byproducts0.0005961.0001.00021000461 MBeef, meat byproducts-babyfood0.0012401.0001.00021000470 MBeef, fat0.0012401.0001.00021000471 MBeef, fat-babyfood0.0012401.0001.00021000480 MBeef, kidney0.0005961.0001.000 95002630 O Peanut 0.016000 1.000 0.770 21000471 M 2002, 21000480 M Beef, kidney 0.000596 1.000 1.000 21000490 M Beef, liver 0.019730 1.000 1.000 21000491 M Beef, liver-babyfood 0.019730 1.000 1.000 23001690 M Goat, meat 0.000114 1.000 1.000 23001700 M Goat, meat byproducts 0.000596 1.000 1.000 23001710 M Goat, fat 0.001240 1.000 1.000 23001720 M Goat, kidney 0.000596 1.000 1.000 23001730 M Goat, liver 0.019730 1.000 1.000 24001890 M Horse, meat 28002210 M Meat, game 0.000114 1.000 1.000 1.000 1.000

 28002210 M
 Meat, game
 0.000014
 1.000
 1.000

 25002900 M
 Pork, meat
 0.000014
 1.000
 1.000

 25002901 M
 Pork, meat-babyfood
 0.00014
 1.000
 1.000

 25002910 M
 Pork, skin
 0.000149
 1.000
 1.000

 25002920 M
 Pork, meat byproducts
 0.000072
 1.000
 1.000

 25002921 M
 Pork, meat byproducts-babyfood
 0.000072
 1.000
 1.000

 25002930 M
 Pork, fat
 0.000149
 1.000
 1.000

 25002931 M
 Pork, fat
 0.000149
 1.000
 1.000

 25002940 M
 Pork, kidney
 0.000072
 1.000
 1.000

 0.000114 25002950 M Pork, liver 0.002370 1.000 1.000 25002950 m 2000, 29003120 M Rabbit, meat 0.000114 1.000 1.000 0.000114 1.000 1.000 0.000114 1.000 1.000 0.000596 1.000 1.000 0.001240 1.000 1.000 26003390 M Sheep, meat 26003391 MSheep, meat-babyfood26003400 MSheep, meat byproducts 26003410 M Sheep, fat 26003411 M Sheep, fat-babyfood 0.001240 1.000 1.000 26003420 M Sheep, kidney 0.000596 1.000 1.000 40000930 PChicken, meat0.0197301.0001.00040000931 PChicken, meat-babyfood0.0001761.0001.00040000940 PChicken, liver0.0002701.000

40000950 P	Chicken, meat byproducts	0.000336	1.000	1.000
40000951 P	Chicken, meat byproducts-babyfoo	0.000336	1.000	1.000
40000960 P	Chicken, fat	0.003304	1.000	1.000
40000961 P	Chicken, fat-babyfood	0.003304	1.000	1.000
40000970 P	Chicken, skin	0.001378	1.000	1.000
40000971 P	Chicken, skin-babyfood	0.001378	1.000	1.000
70001450 P	Egg, whole	0.000748	1.000	1.000
70001451 P	Egg, whole-babyfood	0.000748	1.000	1.000
70001460 P	Egg, white	0.000748	1.000	1.000
70001461 P	Egg, white (solids)-babyfood	0.000748	1.000	1.000
70001470 P	Egg, yolk	0.000748	1.000	1.000
70001471 P	Egg, yolk-babyfood	0.000748	1.000	1.000
60003010 P	Poultry, other, meat	0.000176	1.000	1.000
60003020 P	Poultry, other, liver	0.000870	1.000	1.000
60003030 P	Poultry, other, meat byproducts	0.000336	1.000	1.000
60003040 P	Poultry, other, fat	0.003304	1.000	1.000
60003050 P	Poultry, other, skin	0.001378	1.000	1.000
50003820 P	Turkey, meat	0.000176	1.000	1.000
50003821 P	Turkey, meat-babyfood	0.000176	1.000	1.000
50003830 P	Turkey, liver	0.000870	1.000	1.000
50003831 P	Turkey, liver-babyfood	0.000870	1.000	1.000
50003840 P	Turkey, meat byproducts	0.000336	1.000	1.000
50003841 P	Turkey, meat byproducts-babyfood	0.000336	1.000	1.000
50003841 P	Turkey, fat	0.003304	1.000	1.000
50003850 P 50003851 P	Turkey, fat-babyfood	0.003304	1.000	1.000
50003851 P	Turkey, skin	0.001378	1.000	1.000
50003860 P 50003861 P	Turkey, skin-babyfood	0.001378	1.000	
27002220 D	Milk, fat	0.001378	1.000	1.000 1.000
27002221 D	Milk, fat - baby food/infant for	0.002825	1.000	1.000
27012230 D	Milk, nonfat solids	0.000113	1.000	1.000
27012231 D	Milk, nonfat solids-baby food/in	0.000113	1.000	1.000
27022240 D	Milk, water	0.000018	1.000	1.000
27022241 D	Milk, water-babyfood/infant form	0.000018	1.000	1.000
27032251 D	Milk, sugar (lactose)-baby food/	0.000113	1.000	1.000
01010520 1A	Beet, sugar	0.002500	1.000	0.700
01010521 1A	Beet, sugar-babyfood	0.002500	1.000	0.700
01010530 1A	Beet, sugar, molasses	0.071000	1.000	0.700
01010531 1A	Beet, sugar, molasses-babyfood	0.071000	1.000	0.700
06003470 6	Soybean, seed	0.046000	1.000	0.270
06003480 6	Soybean, flour	0.046000	1.000	0.270
06003481 6	Soybean, flour-babyfood	0.046000	1.000	0.270
06003490 6	Soybean, soy milk	0.046000	1.000	0.270
06003491 6	Soybean, soy milk-babyfood or in	0.046000	1.000	0.270
06003500 6	Soybean, oil	0.212000	1.000	0.270
06003501 6	Soybean, oil-babyfood	0.212000	1.000	0.270

Exposure analysis

Attachment 12: Complete Commodity Analysis of Cancer Analysis Performed with all Crops Excluding Turf.

U.S. Environmental Protection Agency Ver. 2.00 DEEM-FCID Chronic analysis for TETRACONAZOLE (1994-98 data) Residue file name: C:\Documents and Settings\tbloem\tetraconazole\120603cancer without turf.R98 Adjustment factor #2 used. Analysis Date 12-12-2006/15:06:41 Residue file dated: 12-12-2006/15:04:57/8 $Q^* = 0.023$ COMMENT 1: acute for females 13-50 only FQPA SF = 1x (acute and chronic) _____ Complete commodity contribution analysis for U.S. Population (total) _____ Crop Group = (0) Other Exposure analysis ----mg/kg Lifetime risk Residue Adjustment (ppm) Factors body wt/day (Q*= .023) Food name Peanut (95002630): 0.016000 1.000 0.770 0.0000002 5.48E-09 FoodForm N/S Peanut, butter (95002640): 0.016000 1.890 0.770 0.0000012 2.69E-08 FoodForm N/S Peanut, oil (95002650): FoodForm N/S 0.055000 1.000 0.770 0.0000001 1.81E-09 Water, direct, all sources (86010000): FoodForm N/S 0.004970 1.000 1.000 0.0000603 1.39E-06 Water, indirect, all sources (86020000): FoodForm N/S 0.004970 1.000 1.000 0.0000444 1.02E-06 -------Crop group subtotal 0.0001062 2.44E-06

Crop Group = (M) Meat

Food name	Residue (ppm)	Adjust Fact		mg/kg body wt/day	Lifetime risk (Q*= .023)	
Beef, meat (21000440):						
FoodForm N/S	0.000114	1.000	1.000	0.000001	1.89E-09	
Beef, meat-babyfood (21000441):					
FoodForm N/S	0.000114	1.000	1.000	0.000000	9.65E-12	
Beef, meat, dried (21000450):						
FoodForm N/S	0.000114	1.920	1.000	0.000000	9.37E-12	
Beef, meat byproducts (210004						
FoodForm N/S	0.000596	1.000	1.000	0.000000	3.08E-10	
Beef, meat byproducts-babyfoo	d (21000461):				
FoodForm N/S	0.000596	1.000	1.000	0.000000	5.48E-14	
Beef, fat (21000470):						
FoodForm N/S	0.001240	1.000	1.000	0.000002	4.64E-09	
Beef, fat-babyfood (21000471):						
FoodForm N/S	0.001240	1.000	1.000	0.000000	9.07E-12	
Beef, kidney (21000480):						
FoodForm N/S	0.000596	1.000	1.000	0.000000	6.58E-13	
Beef, liver (21000490):						

Tetraconazole Dietary Exposure and Risk Assessment				D321637	
FoodForm N/S	0.019730	1.000	1.000	0.000001	2.01E-09
Beef, liver-babyfood (2100					
FoodForm N/S	0.019730	1.000	1.000	0.000000	3.00E-11
Goat, meat (23001690):					
FoodForm N/S	0.000114	1.000	1.000	0.000000	6.09E-12
Goat, meat byproducts (230					
FoodForm N/S	0.000596	1.000	1.000	no exposure	
Goat, fat (23001710): FoodForm N/S	0.001240	1.000	1.000	0.000000	2.40E-12
Goat, kidney (23001720):	0.001240	1.000	1.000	0.0000000	2.406-12
FoodForm N/S	0.000596	1.000	1.000	no exposure	
Goat, liver (23001730):	0.0000000	21000	2.000	no onpobalo	
FoodForm N/S	0.019730	1.000	1.000	no exposure	
Horse, meat (24001890):				-	
FoodForm N/S	0.000114	1.000	1.000	no exposure	
Meat, game (28002210):					
FoodForm N/S	0.000114	1.000	1.000	0.000000	2.50E-11
Pork, meat (25002900):	0 000014	1 0 0 0	1 0 0 0		0 01 - 11
FoodForm N/S	0.000014	1.000	1.000	0.000000	9.91E-11
Pork, meat-babyfood (25002 FoodForm N/S	0.000014	1.000	1.000	0.000000	3.55E-13
Pork, skin (25002910):	0.000014	1.000	1.000	0.0000000	2.226-12
FoodForm N/S	0.000149	1.000	1.000	0.000000	8.94E-12
Pork, meat byproducts (250					
FoodForm N/S	0.000072	1.000	1.000	0.000000	3.46E-11
Pork, meat byproducts-baby	food (2500292	l):			
FoodForm N/S	0.000072	1.000	1.000	0.000000	6.62E-15
Pork, fat (25002930):					
FoodForm N/S	0.000149	1.000	1.000	0.000000	2.87E-10
Pork, fat-babyfood (250029		1 000	1 0 0 0	0 000000	2 04 1 1 2
FoodForm N/S Pork, kidney (25002940):	0.000149	1.000	1.000	0.000000	3.94E-13
FoodForm N/S	0.000072	1.000	1.000	0.000000	5.80E-14
Pork, liver (25002950):	0.000072	1.000	1.000	0.0000000	5.000 14
FoodForm N/S	0.002370	1.000	1.000	0.000000	5.18E-11
Rabbit, meat (29003120):					
FoodForm N/S	0.000114	1.000	1.000	0.000000	7.53E-13
Sheep, meat (26003390):					
FoodForm N/S		1.000	1.000	0.000000	1.37E-11
Sheep, meat-babyfood (2600					
FoodForm N/S	0.000114	1.000	1.000	0.000000	1.05E-13
Sheep, meat byproducts (26 FoodForm N/S	0.000596	1 000	1 000	0 000000	ר <u>ה</u> הר ה
Sheep, fat (26003410):	0.000596	1.000	1.000	0.000000	7.27E-13
FoodForm N/S	0.001240	1.000	1.000	0.000000	3.07E-11
Sheep, fat-babyfood (26003		1.000	1.000	0.0000000	3.071 11
FoodForm N/S	0.001240	1.000	1.000	0.000000	5.70E-14
Sheep, kidney (26003420):					
FoodForm N/S	0.000596	1.000	1.000	0.000000	1.37E-14
Sheep, liver (26003430):					
FoodForm N/S	0.019730	1.000	1.000	0.000000	4.54E-13
Crop group subtotal				0.0000004	
crop group subcotar				0.0000004	J. H / E- US

Crop Group = (P) Poultry

Crop Group = (P) Poultry				Exposure	e analysis
Food name		Adjust Fact		mg/kg body wt/day	Lifetime risk (Q*= .023)
Chicken, meat (40000930):					
FoodForm N/S	0.000176	1.000	1.000	0.000001	1.86E-09
Chicken, meat-babyfood (40000)		1 0 0 0	1 0 0 0		0 000 11
FoodForm N/S Chicken, liver (40000940):	0.000176	1.000	1.000	0.000000	2.02E-11
FoodForm N/S	0.000870	1.000	1.000	0.000000	2.32E-11
Chicken, meat byproducts (400)					
FoodForm N/S	0.000336	1.000	1.000	0.000000	1.00E-10
Chicken, meat byproducts-baby:			1 0 0 0	0 000000	1 040 10
FoodForm N/S Chicken, fat (40000960):	0.000336	1.000	1.000	0.000000	1.24E-12
	0.003304	1.000	1.000	0.000002	3.78E-09
Chicken, fat-babyfood (400009)					
FoodForm N/S	0.003304	1.000	1.000	0.000000	3.94E-11
Chicken, skin (40000970):					
FoodForm N/S Chicken, skin-babyfood (40000)	0.001378	1.000	1.000	0.000000	7.67E-10
FoodForm N/S	0.001378	1.000	1.000	0.000000	7.92E-12
Egg, whole (70001450):	0.001070	1.000	1.000		
FoodForm N/S	0.000748	1.000	1.000	0.000003	6.40E-09
Egg, whole-babyfood (70001451)					
FoodForm N/S	0.000748	1.000	1.000	0.000000	1.69E-12
Egg, white (70001460): FoodForm N/S	0.000748	1.000	1.000	0.000000	2.77E-10
Egg, white (solids)-babyfood			1.000	0.0000000	2.776-10
FoodForm N/S	0.000748	1.000	1.000	no exposu	re
Egg, yolk (70001470):				_	
FoodForm N/S	0.000748	1.000	1.000	0.000000	1.35E-10
Egg, yolk-babyfood (70001471)	: 0.000748	1 000	1 000	0 000000	2.49E-12
FoodForm N/S Poultry, other, meat (6000301)		1.000	1.000	0.000000	2.496-12
FoodForm N/S	0.000176	1.000	1.000	0.000000	9.59E-12
Poultry, other, liver (6000302	20):				
FoodForm N/S	0.000870	1.000	1.000	0.000000	4.80E-13
Poultry, other, meat byproduct			1 0 0 0		0 000 10
FoodForm N/S Poultry, other, fat (60003040)	0.000336	1.000	1.000	0.000000	8.89E-13
FoodForm N/S	0.003304	1.000	1.000	0.000000	7.61E-11
Poultry, other, skin (6000305)		1.000	1.000		////
FoodForm N/S	0.001378	1.000	1.000	0.000000	1.16E-11
Turkey, meat (50003820):					
FoodForm N/S	0.000176	1.000	1.000	0.000000	5.10E-10
Turkey, meat-babyfood (500038: FoodForm N/S	21): 0.000176	1.000	1.000	0.000000	1.15E-11
Turkey, liver (50003830):	0.0001/0	1.000	1.000	0.0000000	1.100 11
FoodForm N/S	0.000870	1.000	1.000	0.000000	5.80E-12
Turkey, liver-babyfood (50003)					
FoodForm N/S	0.000870	1.000	1.000	no exposu	re
Turkey, meat byproducts (5000) FoodForm N/S		1 000	1 000	0 000000	ፍ ሰር ኮ 1 1
Turkey, meat byproducts-babyfo	0.000336 ood (500038	1.000	1.000	0.000000	5.06E-11
Tainey, meat Syproduces Dabyit					

Tetraconazole Dietary Exposure and Risk Assessment				D321637	
FoodForm N/S	0.000336	1.000	1.000	0.0000000	6.88E-13
Turkey, fat (50003850):					
FoodForm N/S	0.003304	1.000	1.000	0.0000000	1.06E-09
Turkey, fat-babyfood (50	003851):				
FoodForm N/S	0.003304	1.000	1.000	0.0000000	1.51E-11
Turkey, skin (50003860):					
FoodForm N/S	0.001378	1.000	1.000	0.000000	2.12E-10
Turkey, skin-babyfood (5	0003861):				
FoodForm N/S	0.001378	1.000	1.000	0.000000	3.80E-12
Crop group subtot	al			0.000007	1.54E-08
1 9 1					

Crop Group = (D) Dairy Products

Clop Gloup - (D) Daily Flout			Exposu	re analysis
Food name	Residue (ppm)	Adjustment Factors		Lifetime risk 7 (Q*= .023)
Milk, fat (27002220):				
FoodForm N/S	0.002825	1.000 1.0	00 0.000000	9 2.16E-08
Milk, fat - baby food/infant	formula (27	7002221):		
FoodForm N/S	0.002825	1.000 1.0	00 0.000000) 1.22E-11
Milk, nonfat solids (27012230):			
FoodForm N/S				1.92E-09
Milk, nonfat solids-baby food	l/infant fo	(27012231):		
FoodForm N/S	0.000113	1.000 1.0	00 0.000000) 4.84E-11
Milk, water (27022240):				
FoodForm N/S	0.000018	1.000 1.0	00 0.0000001	2.28E-09
Milk, water-babyfood/infant f				
FoodForm N/S	0.000018	1.000 1.0	00 0.000000) 7.52E-13
Milk, sugar (lactose)-baby fo				
FoodForm N/S	0.000113	1.000 1.0	00 0.000000	2.04E-10
Crop group subtotal			0.0000011	2.60E-08

Crop Group = (1) Root and Tuber Vegetables

		Exposure analysi			e analysis
Food name	Residue (ppm)	Adjustment Factors		mg/kg body wt/day	Lifetime risk (Q*= .023)
Beet, sugar (01010520):					
FoodForm N/S	0.002500	1.000	0.700	0.0000005	1.16E-08
Beet, sugar-babyfood (0101052	1):				
FoodForm N/S	0.002500	1.000	0.700	0.000000	1.47E-10
Beet, sugar, molasses (010105	30):				
FoodForm N/S	0.071000	1.000	0.700	0.000001	2.62E-09
Beet, sugar, molasses-babyfood (01010531):					
FoodForm N/S	0.071000	1.000	0.700	0.000000	1.71E-11
Crop group subtotal				0.000006	1.44E-08

Crop Group = (6) Legume Vegetables (Succulent or Dried)

Crop Group = (6) Legume vegetables (Succulent or Dried) Exposure analysis					e analysis
Food name		Adjust Fact		mg/kg body wt/day	Lifetime risk (Q*= .023)
Soybean, seed (06003470):					
FoodForm N/S	0.046000	1.000	0.270	0.000000	9.87E-10
Soybean, flour (06003480):					
FoodForm N/S		1.000	0.270	0.000002	3.52E-09
Soybean, flour-babyfood (0600	3481):				
FoodForm N/S	0.046000	1.000	0.270	0.000001	1.37E-09
Soybean, soy milk (06003490):					
FoodForm N/S	0.046000	1.000	0.270	0.000003	6.21E-09
Soybean, soy milk-babyfood or	infant fo	(060034	91):		
FoodForm N/S	0.046000	1.000	0.270	no exposur	re
Soybean, oil (06003500):					
FoodForm N/S	0.212000	1.000	0.270	0.0000238	5.47E-07
Soybean, oil-babyfood (060035	01):				
FoodForm N/S	0.212000	1.000	0.270	0.000008	1.85E-08
Crop group subtotal				0.0000251	5.77E-07
Crop Group = (14) Tree Nuts					
				Exposure	e analysis

		Exposure analysis			
Food name	Residue (ppm)	Adjust Fact		mg/kg body wt/day	Lifetime risk (Q*= .023)
Pecan (14002690): FoodForm N/S	0.009000	1.000	1.000	0.0000000	2.81E-10
Crop group subtotal				0.0000000	2.81E-10
Population subgroup tot	al			0.0001342	3.09E-06